C14
Elemente de arhitectura procesoarelor (2)

https://www.lessons2all.com/CompArchi6.php
https://www.lessons2all.com/CompArchi4.php

https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture

https://www.youtube.com/watch?v=7WV0yMzc6y8
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100

https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Languages/Introduction_to_
Assembly_Language_Programming%3A_From_Soup_to_Nuts%3A_ARM_Edition_(Kann)

https://www.lessons2all.com/CompArchi6.php
https://www.lessons2all.com/CompArchi4.php
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.tutorialspoint.com/what-is-load-store-reordering-in-computer-architecture
https://www.youtube.com/watch?v=7WV0yMzc6y8
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100
https://www.slideshare.net/slideshow/instruction-set-architecture/127332100

* Atunci cand se proiecteaza un CPU, trebuie mai intai creata o reprezentare virtuala
pentru a specifica o serie de decizii arhitecturale care trebuie luate.

1.CPU-ulva fi un CPU cu set de instructiuni complex (CISC) sau un CPU cu set de
instructiuni redus (RISC)?

2. Care sunt tipurile de date acceptate, de ex., CPU-ul va accepta intregi, caractere, nr.
flotante, double, etc.?

3. Cat de mari vor fi elementele de date, cum ar fiintregi si adrese? Adesea, acest
lucru este legat si numit dimensiunea cuvantului pentru un CPU.

4. Formatul datelor, cum ar fi utilizarea C2 pentru valori intregi, formatul IEEE 754/85
la nr. flotante si ASCII pentru caractere. Trebuie specificat formatul pentru toate tipurile
de date acceptate.

5. Cate registre vor exista si cum vor fi utilizate?

6. Cum sunt transferate datele intre unitatile din CPU, numite calea de date a

procesorului?

7. Cum vor fi furnizate datele catre ALU sau, mai precis, computerul va avea o

organizare cu 0 adrese (stiva), 1 adresa (acumulator) sau 2/3 adrese (registre

generale)?

8. La proiectarea unei UCP, memoria poate fi accesata direct prin instructiuni sau
accesul la memorie poate fi limitat la instructiuni load-store. (CPU-ARM)

9. Exista o memorie unificata, numita arhitectura von Neumann/Princeton, sau
memoria este impartita intre zona de cod si date, numita arhitectura Harvard.

Arhitectura Load-Store

Atunci cand se proiecteaza o CPU , exista doua moduri de baza in care procesorul poate
accesa memoria. Procesorul poate permite accesul direct la memorie ca parte a oricarei
instructiuni sau poate permite accesul la memorie numai cu instructiuni speciale numite
instructiuni de incarcare si stocare.

Un CPU care permite accesarea memoriei de catre orice instructiune are, de obicei,
instructiuni de lungimi diferite si necesita ca CPU-ul sa consume mai multe cicluri de ceas
pentru decodarea instructiunii si accesarea memoriei. Acest lucru este mai frecvent in
cazul computerelor cu set de instructiuni complexe (CISC), cum ar fi seria de CPU-uri
Intel x86.

ARM este un alt tip de CPU, numit computer cu set de instructiuni redus sau arhitectura
RISC. Unul dintre criteriile majore de proiectare la crearea unui CPU RISC a fost ca toate
instructiunile sa fie regulate, ceea ce inseamna ca instructiunile ar avea toate aceeasi
dimensiune si ar necesita acelasi timp pentru decodare si executare. Aceasta regularitate
a instructiunilor permite CPU-ului sa functioneze mai rapid si sa fie optimizat folosind
tehnici precum proiectarea pipeline, care sunt dificile, daca nu imposibile, pe un computer
CISC.

De asemenea, permite compilatorului sa profite de un numar mai mic de instructiuni mai
regulate, in loc de un numar mare de instructiuni generice complexe. Posibilitatea de a
compila programe folosind comportamente specifice pentru un program, in loc sa
foloseasca instructiuni generice complexe, permite compilatoarelor sa optimizeze mai
bine codul, facand programele mai rapide.

https://creativecommons.org/licenses/by/4.0/

Ad

dress

Program
Memory

—»

Instruction

r0

rl

r2

r3

h J

Inc +d’~‘

* (Calculatoarele RISC nu permit tuturor instructiunilor sa acceseze memoria, ci au
operatii speciale pentru incarcarea si stocarea datelorin registre. Unitatile interne ale
CPU utilizeaza registre pentru introducerea datelor si nu pot accesa memoria direct.

* Datele externe din memorie trebuie mai intai incarcate intr-un registru inainte de a

Rm or imm
Rn

Rd (dest)
Rt (value to
mem)

Rd or Rt R

rd

r5

ré

r/

Rn

Rm or Immediate > ~

s
R"'\-\.

ALU

Rt (value to save to memory

Value from ALl

\\H‘-
\'J Address
~
1

 ——

]

Data
Memory

Value from memory

Arhitectura load-store CPU cu 3-adrese

putea fi utilizate.

* Aceasta diagrama bloc CPU este o arhitectura de incarcare si stocare cu 3 adrese.

Address

Program
Memory

Instruction

ro

rl

r2

r3

PC

“» Inc +4 —|

Rm or imm
Rn

Rd (dest)
Rt (value to
mem)

Rd or Rt
=

r4

rS

re

r7

Rm or Immediate

Address . Data

L///J l] Memory
Rn .
ALU

Rt (value to save to memory |

Value from Al

Value from memory

Arhitectura load-store CPU cu 3-adrese evidentiind calea de date

Program

Instruction

ro

rl

r2

r3

Y

Memory

PC

Rm or imm
Rn

Rd (dest)
Rt (value to
mem)

Rd or Rt

r4

r5

re

r7

Rm or Immediate

_Rn, Rs, ShAmt =/
ALU

Rt (value to save to memory

Value from ALI

Data
Memory

Value from memory

Arhitectura load-store CPU cu 3-adrese evidentiind store-operation

ro
rl
r2 Rm or Immediate
Address r3
Program Instruction Address Data
g . | Memor
MemOrV :nm or imm rd " Rn, Rs, Shamt :/ Yy
Rd (dest)
Rt (value to rS ALU
mem)
PC] Rd or Rt _ r6
: Rt (value to save to memory
r/7
“# Inc +4
NI Value from ALl
+ Value from memory

Arhitectura load-store CPU cu 3-adrese evidentiind load-operation

LDR Rt, [Rn, immediate] LDR r1, [r2, #4]
LDR Rt, [Rn, Rm] LDR r1, [r2, r3]
STR Rt, [Rn, immediate] STR r1, [r2, #4]

STR Rt, [Rn, Rm] STR r1, [r2, r3]

Auto incrementarea registrului Rt

* Limbajul de asamblare ARM are o caracteristica utila atunci cand executa
operatii de incarcare si stocare; permite actualizarea automata a registrului Rn
cu valoarea calculata cu adresa de memorie utilizata. Aceasta se numeste

auto-incrementare a registrului.
* Urmatoarele ex. ilustreaza modul de specificare a auto-incrementarii.

Fara auto-incrementare:

LDR r1, [r2, #4] Fara auto-incrementare, valoarea / r2 nu se modifica la
STR r1, [r2, r3] executarea uneiinstructiuni LDR sau STR.

Pre-incrementare
 Cu pre-incrementare, valoarea/r2 este modificata inainte de

LDR rl1, [r2, #4]! . . e

STR ri. [r2. r310 calcularea adresei, iar noua adresa este utilizata la executarea
’ ’ unei instructiuni LDR sau STR.

Post-incrementare

 Cu post-incrementare, valoarea/r2 este modificata dupa
calcularea adresei, iar adresa veche este utilizata la executarea

uneiinstructiuni LDR sau STR.

LDR r1, [r2], #4
STR r1, |[r2], r3

Moduri de adresare in limbajul de asamblare ARM

Diferitele moduri de adresare sau modalitati de accesarea variabilelor in limbajul de
asamblare ARM. Modurile de adresare care vor fi abordate sunt: imediat, direct, direct
prin registru, indirect prin registru, indirect prin registru cu offset, indirect si relativ la PC.

Adresare imediata - valoarea care trebuie utilizata este inclusa in instructiunea insasi. Un
exemplu de adresare imediata este urmatoarea instructiune ADD:

ADDr1,r2, #12; r1=r2+12
- o valoare imediata este foarte diferita de o constanta. O valoare imediata nu este stocata
in memoria de date, ci face parte din instructiune, astfel incat nu este necesar saincarcati
valoarea intr-un registru inainte de a o utiliza. O constanta este o valoare stocata in
memorie, ca orice alta variabila, cu exceptia faptului ca valoarea sa nu poate fi modificata.
Pentru a utiliza o constanta, valoarea trebuie incarcata intr-un registru, ceea ce face ca
utilizarea unei constante sa fie potential mai costisitoare decat utilizarea unei valori
imediate.

Adresare directa - adresa uneivalori este cunoscuta. de ex. atunci cand valoarea este
stocata la o eticheta.

LDR r1, =num

LDR r1, [r1, #0]

num: .word 5

in acest fragment de cod, exista o adresa cunoscuta a valorii care trebuie incarcata.
In acest ex. mai intai adresa lui num (nu valoarea 5) este incarcata in registrul r1. Adresa din
registru este apoi utilizata pentru a incarca valoareain r1.

Adresare directa la registru - O valoare este o0 adresare directa la registru daca
valoarea este stocata in registru. In instructiunea urmatoare, adresarea directa la
registru este utilizata pentru ambele componente ale adunarii.

ADD r1,r2,r3 ; r1=r2+r3

Adresre la Registru indirect - adresa variabilei care trebuie utilizata este stocatain
registru, iar valoarea de la acea adresa este incarcata intr-un registru pentru a fi
utilizata ulterior.
* Acest lucru poate fi util in mai multe situatii pentru a accesa date.
De ex., urmatoarea ar fi o modalitate eficienta de a accesa un sir de date intregi
alocate incepand de la adresa etichetei arr. In acest caz, r1 va fi incrementat la
valoarea urmatorului element pe masura ce fiecare valoare a elementului
sirului este incarcatain r2.

LDR r1, =arr ;r1 =adr. array
LDRr2, [r1], #4 ;r2 = continutul adresei (r1) sir1=r1+4
.data

arr: .word 10

Adresare la registru indirect cu offset - este cel mai eficient mod de a gestiona
adresarea atunci cand exista o adresa de baza si valori care se afla la un offset
cunoscut al acelei baze.

Un ex. sunt structurile sau clasele. Pentru a vedea acest lucru, luam in
considerare urmatoarea clasa Java:

class A{
long a;
int b;

}

* Pentru o adresa care indicainceputul claseiin r1, valoarea pentru fiecare
variabila poate fiincarcatain r2 folosind urmatoarele instructiuni:

LDR r2, [r1, #0]
LDR r3, [r1, #8]

Adresarea indirecta este similara cu adresarea indirecta prin registru, cu exceptia

faptului ca valoarea din memorie este de fapt o adresa catre o alta valoare.

 De fapt, valoarea adresata poate fi eainsasi o adresa. De exemplu: luati in
considerare urmatorul fragment de cod:

LDR r1, =addr_num
LDR r1, [r1, #0]
LDRr1, [r1, #0

.data num: .word 5
addr_num: .word num

in acest fragment de cod, valoarea de la adresa etichetei addr_num este adresa
(referinta la) adresa etichetei num. Pentru a gasi valoarea reala, lantul de adrese/
lantul de referinte trebuie parcurs pana cand se gaseste valoarea finala.

Acest lucru devine interesant deoarece ofera o perspectiva asupra relatiei dintre
referinte si valori. O valoare reprezinta datele de la adresa unei referinte.
Referintele indica valori, iar valoarea depinde de relatia sa. Acest lucru duce la
definirea a doi termeni noi: un tip de referinta si un tip de valoare.

Un tip de referinta implica faptul ca valoarea de la adresa este o referinta la o alta
valoare.

Un tip de valoare este o valoare finala in lantul de valori de referinta si este o din
program.

Adresare relativa

PC-ul contine adresa instructiunii care trebuie executata, astfel cand avem o ramificare
intr-un program, implica modificarea PC-ului la o noua valoare. Cum se calculeaza noua
valoare care va fi utilizata pentru PC? Pentru a face acest lucru, vor fi introduse doua

tipuri de adresare: adresarea relativa la PC si adresarea absoluta.
1. O adresa absoluta este o adresa absoluta in memorie.
* Daca adresa memoriei instructiunii de executat este 0x35fc. Pentru a ramifica la
aceasta adresa, tot ce ar fi necesar este ca PC-ul sa fie setat la aceasta valoare
(de exemplu, MOV pc, #0x35fc),
iar codul arincepe sa se execute la noua adresa. Adresarea absoluta este usor de
inteles, dar este oarecum dificil de implementat. La compilarea si asamblarea unui
program, adresele absolute ale instructiunilor masinii nu suntinca cunoscute. Adresa
absoluta a instructiunii este atribuita la momentul link-editarii programului si, prin
urmare, calculul adreselor trebuie amanat pana la momentul link-editarii.

2. Adresarea relativa la PC

e Atunci cand se executa un program, adresa absoluta a PC-ului este cunoscuta. Daca
se cunoaste si distanta de la PC la o alta instructiune, adresa instructiunii catre care
se face ramificarea poate fi calculata prin adaugarea distantei respective la PC, iar
adresa absoluta a acelei instructiuni poate fi calculata. Acest lucru este cunoscut
sub numele de adresare relativa la PC.

In adresarea relativd pe PC, asamblorul sau compilatorul poate calcula distanta dintre
orice instructiune si orice alta instructiune din acelasi fisier.

De exemplu. Instructiunea ,B label_1” intentioneaza sa ramifice la label_1.
Instructiunea de ramificare transmite distanta instructiunii de ramificare la label_1 catre
CPU, iar CPU calculeazi si ramifica la acea instructiune. Inainte de a arita cum se
calculeaza o ramificare, exista cateva consideratii importante pentru calcularea
ramificarilor.

Obs. in primul rand, deoarece instructiunile au toate o dimensiune de 4 octeti, fiecare
instructiune se afla la 4 octeti distanta de instructiunea anterioara, asa ca ati putea
crede ca fiecare instructiune ar adauga 4 la valoarea distantei pentru ramificare. Cu
toate acestea, deoarece instructiunile sunt aliniate la nivel de cuvant, ultimele doua
zerouri sunt eliminate din valoarea distantei. Aceasta inseamna ca distanta utilizata in
instructiunea de ramificare poate fi obtinuta prin numararea numarului de instructiuni
dintre instructiunea de ramificare si instructiunea catre care se ramifica. Retineti ca
acest truc functioneaza, dar nu este reprezentativ pentru ceea ce se intampla in
realitate.

in al doilea rand, cand ramificatia este calculata efectiv, valoarea din PC este PC-ul
instructiunii de ramificare plus 8. Deci, cand executati ramificatia, ar trebui sa incepeti
sa numarati de la instructiunea cu doua inaintea instructiunii de ramificare curente
atunci cand calculati distanta de ramificare. Astfel, in acest exemplu, PC-ul la
instructiunea ,,B label_1” este 0x35e8, dar distanta utilizata in instructiunea de
ramificare este 3 (0x35e8 + 8 + 3*4 = 0x35fc).

ro

rl

r2

CU

Rm or Immediate

r3

A 4

r4

A Bus
Rd

Rn, Rs, or ShAmt

r5

ré

r7

B Bus
ALU

« In continuare, liniile cu s&dgeatd din diagrama sunt de fapt 32 de fire/bus, fiecare
transportand un bit. Setul superior de fire se numeste magistrala A, iar cel inferior de la

se numeste magistrala B.

 Din punctul de vedere al programatorului in asamblare, exista doua formate de baza ptr.
instructiuni. Primul format utilizeaza un registru de destinatie si doua registre sursa

OPR,4, R, R, //inseamna R; < R; OP R,

<OP este operatorul (+,%,-....) ex. ADD r1,r2, r4

Al doilea format utilizeaza un registru de destinatie, un registru sursa si o valoare imediata.
OP Ry, Ry, #num //inseamna R, — R, OP #num ex. ADD r1, r2, #87 ; LSLr1, r1, #2

Instructiuni cu 3-adrese (Exemple)

Instructiuni MOV
MOV Rd, immediate; MOV r1, #36; r1=36
MOV Rd, Rm; MOV r1,r2; rl1e€r2

Instructiuni ADD / SUB

ADD Rd, Rn, immediate; ADDr1,r2,#36 ; r1 <r2+ 36
SUB Rd, Rn, immediate; SUBr1,r2,#36 ;r1<«r2-36
ADDr1,r2,r3;r1 €r2+r3

SUBr1,r2,r3 ;r1€r2-r3

Instructions MUL, SDIV, and UDIV
MUL Rd, Rm,Rs ;MUL¥r1,r2,r3
SDIV Rd, Rn,Rm ;SDIVr1,r2,r3
UDIV Rd, Rn, Rm ;UDIVr1,r2,r3

Instructiuni Logice : AND, OR, XOR, and BIC
MOV r1, #0x42 // put a character ‘B’ in r1
MOV r2, #0x20 // bit-mask for upper to lower case
ORRr1,r1,r2 //r1 now contains the character ‘b’

MOV r1, #0x63 // put a character‘c’inr1

MOV r2, #0x20

BICr1,r1,r2 //r1=0x43; r1=“C”

https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Languages/Intro
duction_to_Assembly Language_Programming: From_Soup_to_Nuts: ARM_Edition_(Kan
n)/04: New Page/4.04:_New_Page

https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Languages/Introduction_to_Assembly_Language_Programming:_From_Soup_to_Nuts:_ARM_Edition_(Kann)/04:_New_Page/4.04:_New_Page
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Languages/Introduction_to_Assembly_Language_Programming:_From_Soup_to_Nuts:_ARM_Edition_(Kann)/04:_New_Page/4.04:_New_Page
https://eng.libretexts.org/Bookshelves/Computer_Science/Programming_Languages/Introduction_to_Assembly_Language_Programming:_From_Soup_to_Nuts:_ARM_Edition_(Kann)/04:_New_Page/4.04:_New_Page

	Slide 1: C14 Elemente de arhitectura procesoarelor (2)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

