
Curs 13

Elemente de arhitectura procesoarelor

1. Instructiune. Ciclu masina. Stare.

2. Metode de control a transferului de date

3. Taxonomii ale arhitecturilor de prelucare

4. Paralelism - pipeline, superscalar

5. Legea lui Amdahl

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

1. Instructiune. Ciclu masina. Stare.

2

- Instructiunea este o operatie executata de procesor

 (ex. MOV AX,CX, ADD AX, DX, MUL CL,…)

- Operatiile μP se executa sicronizat cu ceasul intern Φ

- Pentru executia unei instructiuni au loc operatii de RD, WR, interne = CICLII MASINA

- o instructiune contine mai multi ciclii masina (3,…n), iar fiecare ciclu masina
dureaza mai multi tacti (STARI)

- Tipuri de cicluri masina: fetch (extragere instr.), RD/WR memorie, RD/WR port,
cerere-achitare bus, cerere-achitare intrerupere mascabila, cerere-achitare
intrerupere nemascabila, ciclu de initializare (dupa RESET), ciclu de iesire din HALT)

- orice instructiune este o combinatie de ciclii masina si incepe cu un ciclu FETCH –
extragerea codului instructiunii din memorie

3

3

I-1 I-2 I-3 I-4

PC program

I-1
instruction

register

op1
op2

memory fetch

ALU

registers

w
ri
te

d
e
c
o
d
e

execute

read

w
ri
te

(output)

registers

flags

program counter
instruction queue

• Fetch

• Decode

• Fetch operands

• Execute

• Store output

Ciclu executie instructiune

4

ciclu FETCH =M1 (Z80)

Zilog - Limbaj Asamblare LD A, 9Fh => Limbaj Masina 3E 9F

5

LD A, 9fh

3E 9F

6

7

8

2. Metode de control a transferului de date

- Memoria pastreaza programe/date, dar are capacitate limitata

- recurgem la I/O (porturi) pentru a incarca si alte programe/date

- conexiunile pot fi seriale/paralele

• Problema

- sincronizarea μP cu perifericele – adaptarea vitezelor diferite de lucru

METODE de CONTROL UTILIZATE

I. POLLING (interogare, program, I/O programate)

II. INTRERUPERI

III. DMA (Direct Memory Access)- acces direct la memorie sau
combinatii ale lor

9

μP

Memorie

Periferic 1

Periferic 2

?

?

Data Bus

a. I/O programate (polling)

- simpla, sincrona, ieftina, nu necesita hard special

- Viteza de raspuns scazuta, ocupa procesorul 100%!!

P1 P2 …………………………. Pn

10

b. Intreruperi Hardware

- Metoda asincrona, are mai multi pasi/etape, prioritati

..…………

IRQ n INTA

INTA

μP

Memorie

Periferic 1

Periferic n

Data Bus

PIC
Programmable

Interrupt
Controller

IRQ 1INT

11

c. DMA (direct memory access) – acces direct la memorie

- Pentru periferice rapide : comprima intr-un ciclu MRD+I/O WR sau
 I/O RD + MWR

Z

12

- Secventa de cod care transfera date de la un port de intrare in memorie

READ_BYTE: ;tacti
IN AL, DX ;[13] citire port

 MOV[BX], AL ;[2] scrie val. memorie
 INC BX ;[2] BX=BX+1
 DEC CL ;[2] CL=CL-1
 JNZ READ_BYTE ;[10] sar daca CL nu e 0

- Aceasta secventa dureaza 29 ciclii de ceas, la 20MHz:

fclk = 20MHz; Tclk = 1/fclk = 50ns;

29 x 50ns = 1450ns = 1.45μs /byte

Rata de transfer poate ajunge la : 1/(1.45μs/B) = 670KB/s (lent)

- Prin transfer DMA se poate atinge ~ 10MB/s, la aceiasi frecventa de ceas

13

3. Taxonomii ale arhitecturilor de prelucare

• Flynn [1966]
• Feng [1972]
• Händler [1977]
• Moderne (Sima, Fountain & Kacsuk)

• Instruction-Level Parallelism (ILP) - Executarea operațiilor/instrucțiunilor
independente dintr-un flux de instrucțiuni în paralel (pipelining, superscalar, VLIW)

• Thread-Level Parallelism (TLP)- Execută fluxuri de instrucțiuni independente, în paralel
(multithreading, nuclee multiple)

• Data-Level Parallelism (DLP)
Executa mai multe operații de același tip în paralel (execuție vectorială/SIMD)

14

3.1. Clasificarea dupa Flynn

Tipuri de Arhitecturi

1) Single Instruction and Single Data stream (SISD)
2) Single Instruction and multiple Data stream (SIMD)
3) Multiple Instruction and Single Data stream (MISD)
4) Multiple Instruction and Multiple Data stream (MIMD)

- Se bazeaza pe multiplicitatea sirului de date sau instructiuni primite de CPU
pe parcursul executiei unui program

15

16

!!! TOP500 supercomputers sunt bazate pe arhitectura MIMD

• Single instruction, multiple thread (SIMT) este un model de executie folosit in procesarea
paralela unde SIMD este combinata cu multithreading.

• SIMT a fost introdusa de Nvidia

https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Supercomputer

• Subcategoriile SIMD din taxonomia lui Flynn includ Array Processing și SIMT, care reprezintă
evoluții ale modelului Single Instruction, Multiple Data pentru procesare masivă paralelă pe
date uniforme.

• Array Processing folosește matrici de procesoare elementare sincronizate, în timp ce SIMT
(Single Instruction, Multiple Threads) extinde conceptul la execuție în lock-step pe thread-uri
cu memorie locală, fiind baza arhitecturilor GPU moderne precum NVIDIA CUDA.

• Array Processing în SIMD - Reprezintă procesoare în care o instrucțiune unică controlează un
array bidimensional de Processing Elements (PE), fiecare cu memorie locală, executând
operații simultan pe vectori mari.

Caracteristici cheie: Masking pentru activarea selectivă a PE-urilor; interconectare mesh sau
hypercube; procesare în timp constant pentru vectori mari (ex. ILLIAC IV cu 64 PE).
Avantaje: Eficiență pe operații matriciale (matrix multiply, FFT); scalabil hardware-wise.
Ex.: Cray-1 vector processor, attached array processors pentru calcul numeric.​​
• SIMT (Single Instruction, Multiple Threads)
Extensie modernă SIMD, unde o instrucțiune se aplică unui grup de thread-uri în lock-step, dar
fiecare thread are program counter și memorie privată, permițând divergență controlată prin
predicate.
Caracteristici cheie: Execuție warp (32 thread-uri pe NVIDIA); reconvergenta la sfârșitul
blocurilor condiționale; diferă de SIMD clasic prin suport pentru stack pointer individual pe
thread.
Avantaje: Flexibilitate mai mare decât SIMD pur (gestionare date independente); optimizat
pentru grafică și ML.
Ex.: GPU-uri CUDA, OpenCL kernels; ILLIAC IV precursor cu predicate masking.

18

➔ Mai mult o configuratie teoretica decat una practica
➔ mașinile MISD pot fi aplicate la calculatoare de timp real tolerante la erori
➔ Foarte putine abordari, fara produse comerciale
➔ (Ex: C.mmp - Carnegie-Mellon University.)

Arhitectura MISD

Ex. Z = sin(x)+cos(x)+tan(x)

Comparație Tehnică

Comparație Sintetică

• Clasele din taxonomia lui Flynn (SISD, SIMD, MISD, MIMD) prezintă avantaje și dezavantaje distincte,
determinate de capacitatea de paralelism, scalabilitate și tipul de aplicații suportate.

Aceste caracteristici influențează alegerea arhitecturii în funcție de sarcinile specifice, de la procesare
secvențială simplă la calcul de înaltă performanță.

SISD (Single Instruction, Single Data) - arhitectura clasică secvențială, bazată pe un singur flux de instrucțiuni și
date.
•Avantaje: Simplitate de implementare și programare; cost redus; eficientă pentru sarcini seriale fără
paralelism; predictibilă în execuție.​
•Dezavantaje: performanță limitată pe date mari; nu exploatează paralelismul modern; viteză dependentă de
transferul intern de date.​

SIMD (Single Instruction, Multiple Data)- Ideal pentru operații uniforme pe vectori sau matrici, comun în GPU
•Avantaje: eficiență ridicată pe date paralele (imagine, ML); utilizare optimă a memoriei; scalabil cu numărul
de elemente procesate simultan (ex. AVX, CUDA).​
•Dezavantaje: Necesită date regulate și instrucțiuni identice; ineficient pe cod ramificat (branching);
programare complexă prin vectorizare.​

MISD (Multiple Instruction, Single Data) - Rară, orientată spre redundanță și pipeline-uri specializate.
•Avantaje: toleranță excelentă la erori prin procesare multiplă; fiabilitate în sisteme critice (fault-tolerance);
utilă în aplicații pipeline (ex. procesare semnal).​
•Dezavantaje: Puțin practică; overhead mare de sincronizare; rar implementată în hardware comercial;
eficiență scăzută pe sarcini generale.

•MIMD (Multiple Instruction, Multiple Data) - Cea mai versatilă, dominantă în sisteme multicore și clustere.
•Avantaje: flexibilitate maximă pentru task-uri independente; scalabil la mii de procesoare; suportă
shared/distributed memory; ideal pentru HPC și aplicații generale.​
•Dezavantaje: programare dificilă (sincronizare, race conditions); overhead de comunicație în distributed
memory; vulnerabil la bottleneck-uri de memorie.

Diferențe și Relații

• Array Processing este SIMD "pur" cu hardware dedicat (mai multe ALU sincronizate), în timp
ce SIMT este SIMD "software-managed" pe multiprocesoare streaming, combinând elemente
MIMD-like prin divergență.

22

3.2. Clasificari Moderne

Arhitecturi

Paralele

Arhitecturi de date paralele

(Data-parallel Architectures)

Arhitecturi Functionale paralele

 (Function-parallel architectures)

23

Arhitecturi de Date Paralele

Data-parallel

architectures

Vector

architectures
Associative &

neural

architectures

SIMDs Systolic

architectures

24

Arhitecturi Functionale Paralele

Function-parallel

architectures

Distributed
Memory
MIMD

Shared
Memory
MIMD

Instr. level
Parallel Arch.

Thread level
Parallel Arch.

(TLP)

Process level
Parallel Arch.

(ILPs) (MIMDs)

Pipelined
processors

VLIWs
Super scalar

processors

4. Paralelism - pipeline, superscalar

25

• Paralelism la nivel de instructiune (ILP)

- Pipeline (o linie de asamblare): Tehnica prin care executia mai multor instructiuni
este suprapusa (faze diferite)

- Arhitecturi Superscalare:

• Se folosesc linii de asamblare (pipeline) paralele

• Paralelism la nivel procesor/procesare :

– Arii de calcul

– Multiprocesoare

– Multicomputere

a. Paralelism la nivel instructiune - Pipeline

• Pipeline de 5 nivele (exemplu: MIPS, Pentium)
• Fiecare instructiune este “sparta” in mai multe etape (faze)
• Fazele instructiunilor se pot executa concurrent/paralel, deoarece exista resurse

(hard) separat pentru fiecare faza (etapa)
 => la fiecare pas se folosesc unitati functionale diferite
• Proiectare Sincrona => etapa cea mai lenta este dominanta

• Nota: Timpul de executie pentru o singura instructiune nu este imbunatatit!!!
 Se imbunatateste rata de executie a instructiunilor

27

27

S1 S2 S3 S4 S5

1

C
y
c
le
s

Stages

S6

2

3

4

5

6

7

8

9

10

11

12

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

S1 S2 S3 S4 S5

1
C
y
c
le
s

Stages

S6

2

3

4

5

6

7

I-1

I-2 I-1

I-2 I-1

I-2 I-1

I-2 I-1

I-2 I-1

I-2

Ptr. k nivele si n instructiuni, nr. necesar de
ciclii:

 k + (n – 1) fata de k*n

Exemplu de procesor non-pipeline.
Multi cicli pierduti!!

• Mai eficienta utilizare a ciclilor.
O rata mai mare de executie a instructiunilor:
(80486 incepe folosirea pipeline)

28

• Pipeline-ul necesita buffere

– Fiecare buffer pastreaza o singura valoare

– Scenariul ideal : sarcini egale la fiecare nivel

• Uneori nu e posibil

• Cel mai lent nivel determina rata fluxului in intregul pipeline

Executia in Pipeline

29

29

• Câteva motive pentru faze de lucru (durate) inegale
 - o faza complexa nu poate fi subdivizata în mod convenabil
 - o operație are durata variabilă de timp pentru a o executa, de ex. preluarea

unui operand depinde de locul unde se află :registre, m. cache, memoria DRAM
 - complexitatea operatiei depinde de tipul de operație
 ADD: poate lua un singur ciclu (4)
 MUL: poate dura mai multe cicli (144)

30

• Ciclii pierduti in pipeline

• Cand un nivel necesita doi sau mai multi tacti, ciclii sunt “risipiti”

S1 S2 S3 S4 S5

1

C
y
c
le
s

Stages

S6

2

3

4

5

6

7

I-1

I-2

I-3

I-1

I-2

I-3

I-1

I-2

I-3

I-1

I-2 I-1

I-1

8

9

I-3 I-2

I-2

exe

10

11

I-3

I-3

I-1

I-2

I-3

Ptr. k nivele si n instructiuni,
nr. de ciclii necesari este:
k + (2n – 1) in loc de k+ (n-1)

31

• Performante:

– Viteza sau banda de exec. instructiunilor (MIPS=Milioane Instructiuni/Sec.)

– Latenta/ timp Executie –>nr. de tacti pe care le ia unei instr. ptr. a furniza
date ptr. alta instructiune

• Mecanism complet hardware (pipeline)

• Toate masinile moderne folosesc tehnica pipeline

– A fost tehnica cheie a anilor ’80 pentru imbunatatirea performantelor

– Din anii ’90 evolutia a fost spre pipeline-uri multiple

32

32

b. Arhitecturi Superscalare
• Un procesor superscalar are pipeline-uri multiple de executie

• In fig. faza S4 are 2 pipeline-uri (u si v).

S1 S2 S3 u S5

1

C
y
c
le
s

Stages

S6

2

3

4

5

6

7

I-1

I-2

I-3

I-4

I-1

I-2

I-3

I-4

I-1

I-2

I-3

I-4

I-1

I-3 I-1

I-2 I-1

v

I-2

I-4

S4

8

9

I-3

I-4

I-2

I-3

10 I-4

I-2

I-4

I-1

I-3

-Ptr. k stari si n instructiuni,
numarul necesar de ciclii
este : k + n

Pentium: 2 pipeline

Pentium Pro: 3 pipeline

33

• Pipeline-uri duale cu 5 nivele cu unitate de FETCH comuna:

– fiecare pipeline are hardware propriu pentru fiecare nivel, furnizand decodare si
executie duplicate;

– Atentie la instrucţiunile dependente sau incompatibile!

→Acest lucru poate fi realizat de către compilator sau sunt controlate în timpul rulării
de hardware suplimentar.

34

Procesor superscalar cu 5 unitati functionale in faza S4

• Definitia actuala a arhitecturii superscalare : un procesor care poate
executa mai multe instrucţiuni pe un ciclu de ceas

• De asemenea, poate fi un pipeline cu unitati functionale multiple numai la
unul sau mai multe nivele ale pipeline-ului

35

c. Paralelism la nivel Procesor

Arie de procesare de tip ILLIAC IV

SIMD Processor: Single Instruction Multiple Data

• Se refera la un calculator tip multiprocesor

36

Paralelism la nivel Procesor

• Sistem Multiprocesor :

a) Multiprocesor cu un singur bus : UCP multiple, independente partajaza o
memorie comuna si alte resurse

b) Un multi-computer cu memorii locale:

• Încerca să reducă numărul de conflicte - procesoarele comunica prin
intermediul schimbului de mesaje

37

5. Legea lui Amdahl (1967 – IBM)

• S (%) - procentul de instructiuni secventiale prin natura lor
• P=1-S(%) - procentajul de instructiuni paralelizabile
• N este numarul de procesoare folosite in calculul paralel

• Accelerarea prelucrarii prin folosirea de unitati de procesare paralele

38

Ex. N=10, 10% secvential, 90% paralel → Sp=5.26

• Dacă considerăm că problema e infinit paralelizabilă (S=0), se obtine următoarea
limită superioară pentru accelerarea procesarii:

Exemple:

p=50%, n->∞ => S=2

p=75%, n->∞ => S=4

p=95%, n->∞ => S=20

39

3939

Legea lui Lee = Legea Amdahl generalizata

 qk - procentul din program ce poate fi executat cu k procesoare
 t1 - timpul de rulare secvenţiala a programului

1

1

1 tqt
p

k

k
=

= 
=

=
p

k

k
p

k

tq
t

1

1





=

===
p

k

k

p

k

k

p

p

k

tq

tq

t

t
S

1

1

1

1

1





==

= ==
p

k

k

p

k

k

p

k

k

p

k

q

k

q

q

S

11

1 1


==

==
p

k

p

k

p

k

p

kp

S

11

111

1

()p
p

S p
2log



p
qk

1
=

Teme de studiat.
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
How do Graphics Cards Work? Exploring GPU Architecture

https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.youtube.com/watch?v=h9Z4oGN89MU

	Slide 1: Curs 13
	Slide 2: 1. Instructiune. Ciclu masina. Stare.
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 4. Paralelism - pipeline, superscalar
	Slide 26: a. Paralelism la nivel instructiune - Pipeline
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41

