Curs 13

Elemente de arhitectura procesoarelor

Instructiune. Ciclu masina. Stare.
Metode de control a transferului de date
Taxonomii ale arhitecturilor de prelucare
Paralelism - pipeline, superscalar

Legea lui Amdahl

nhwNR

with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne

1. Instructiune. Ciclu masina. Stare.

Instructiunea este o operatie executata de procesor
(ex. MOV AX,CX, ADD AX, DX, MUL CL,...)
Operatiile puP se executa sicronizat cu ceasul intern @

Pentru executia unei instructiuni au loc operatii de RD, WR, interne = CICLII MASINA
o instructiune contine mai multi ciclii masina (3,...n), iar fiecare ciclu masina
dureaza mai multi tacti (STARI)

Tipuri de cicluri masina: fetch (extragere instr.), RD/WR memorie, RD/WR port,
cerere-achitare bus, cerere-achitare intrerupere mascabila, cerere-achitare
intrerupere nemascabila, ciclu de initializare (dupa RESET), ciclu de iesire din HALT)

orice instructiune este o combinatie de ciclii masina si incepe cu un ciclu FETCH —
extragerea codului instructiunii din memorie

Ciclu executie instructiune

program counter, i
Instruction queue

(1112 |13 | 14

Fetch

Decode

Fetch operands
Execute

Store output

CLOCK

M1l CYCLE

11—5.1 — il 3 —bld—s; —— 5§ —

[]

ciclu FETCH =M1 (Z280)

Ll L

BUS

-

1

EMABLE FI:.HIJ
FOR “READ™

REFSH ADR OUT X |
SELECT RAM |
IMREQ (DESEL 11;1

1

Ml \r

THAHSHIT

EXTERNAL DEY

CAPTURE RAM nArn
DATA | i

BUS (TRI-STATE)

(TRI-STATE)

Zilog - Limbaj Asamblare LD A, 9Fh => Limbaj Masina 3E 9F

M, Opcode Feiwch

LD A, 9fh
3E 9F

Ay Ag

MEMORY WRITE CYLCLE
s1 --j-; s2 a-1-< s3
CcCLDOCK I I I I I I I I

ADDRESS >< x

MOR
aUS | MEMORY ADDRESS OUT |

SELECT RAM

fMREQ | (DESEL I/0)

. 5 I
EMABLE RAM

|

. NS A
| |

fMl (ML NOT ASSERTED DURING MEM WRITE)

| |

{TRI-STATE) (TRI-STATEY)

INPUT/OUTPUT CYCLE -
51~—-|-|4—-52 -1- Sw D-Id s3

ADDR x | x
OORESS | PORT ADDRESS OUT
BUS '

SELECT I/0O
{I10RQ (DESEL RAM)

\ ENABLEM FOR
/RD "READ" ("WRITE") /

(/WR)
|

DATA __' < % (DATA _ N
BUS Z ouT) /. (TRI-STATE)

CAPTURE INPUT PORT DATA

(TRANSMIT DATA TD OUTPUT PORT)

2. Metode de control a transferului de date

- Memoria pastreaza programe/date, dar are capacitate limitata
- recurgem la I/O (porturi) pentru a incarca si alte programe/date

- conexiunile pot fi seriale/paralele

* Problema

- sincronizarea UP cu perifericele — adaptarea vitezelor diferite de lucru
METODE de CONTROL UTILIZATE

|. POLLING (interogare, program, 1/O programate)

Il. INTRERUPERI

Ill. DMA (Direct Memory Access)- acces direct la memorie sau
combinatii ale lor

a. |/O programate (polling)
- simpla, sincrona, ieftina, nu necesita hard special

- Viteza de raspuns scazuta, ocupa procesorul 100%!!

Memorie

IJ D @ Data Bus

JPeriferic 2

b. Intreruperi Hardware

- Metoda asincrona, are mai multi pasi/etape, prioritati

Memorie

| o o e A
INT I IRQ 1 I Periferic 1
PIC |
Prt;%;:::r:tble IRQ n INTA Perifericn
Controller

c. DMA (direct memory access) — acces direct la memorie

- Pentru periferice rapide : comprima intr-un ciclu MRD+I/O WR sau

/O RD + MWR
Memorie
/M 4 .
‘ DMA Bus adrese
; By | —— g
0
8 ¢ - . Bus control
o)
& | (»)
5 ®
(o)
3 HRQ DREQ !
o HOLD Controler - Echipament
HIDA [HLDA DMA DELCE periferic

® 0

11

- Secventa de cod care transfera date de |la un port de intrare in memorie

READ_BYTE: ;tacti
IN AL, DX ;[13] citire port
MOV[BX], AL ;[2] scrie val. memorie
INC BX :[2] BX=BX+1
DECCL ;[2] CL=CL-1
JNZ READ_BYTE ;[10] sardacaCLnueO

- Aceasta secventa dureaza 29 ciclii de ceas, la 20MHz:
fclk = 20MHz; Tclk = 1/fclk = 50ns;
29 x 50ns = 1450ns = 1.45us /byte
Rata de transfer poate ajunge la: 1/(1.45us/B) = 670KB/s (lent)

- Prin transfer DMA se poate atinge ~ 10MB/s, |la aceiasi frecventa de ceas

12

3. Taxonomii ale arhitecturilor de prelucare

e Flynn (1966
e Feng (1972
e Handler (1977

e Moderne (Sima, Fountain & Kacsuk)

Instruction-Level Parallelism (ILP) - Executarea operatiilor/instructiunilor
independente dintr-un flux de instructiuni in paralel (pipelining, superscalar, VLIW)

Thread-Level Parallelism (TLP)- Executa fluxuri de instructiuni independente, in paralel
(multithreading, nuclee multiple)

Data-Level Parallelism (DLP)

Executa mai multe operatii de acelasi tip in paralel (executie vectoriala/SIMD)
13

3.1. Clasificarea dupa Flynn

- Se bazeaza pe multiplicitatea sirului de date sau instructiuni primite de CPU
pe parcursul executiei unui program

Tipuri de Arhitecturi

1) Single Instruction and Single Data stream (SISD)

2) Single Instruction and multiple Data stream (SIMD)
i SISD f—3» A+B 3) Multiple Instruction and Single Data stream (MISD)
AB 4) Multiple Instruction and Multiple Data stream (MIMD)
+ Instruction Streams
A B SIMD fp—2» A+B R ARARS
CD —2 C+D
SISD
Al - MISD
% £ < traditional von o
x MISD [> A+B o Neumann single | May be pipelined
e A *B n
AB Jo CPU computer Computers
o
" T SIMD MIMD
Y & Vector processors
. MIMD A+B £) P St Multi computers
S Ine graine dala
A B C*D J Multiprocessors
CD Parallel computers

Unitatea | . — : _
de BUS ADRESE Clasificarea arhitecturilor
UAL comanda de prelucrare - dupa Flynn
DinfDout +
BUS DATE INSTRUCTIUNI
MEMORIA
Arhitectura HARVARD
Arhitectura SISD UAL | Unitatea ¢ S
(von Neumann) BUS ADRESE
comanda
Din/Dout
BUS |
DATE
MEMORIA
DATE | PROGRAM

15

INSTRUCTIUNI
MEMORIA 1
i (non/shared)
D1 r
*— | | |UNITATEADE
Arhitectura UALT D2 COMANDA
SIMD T 5
Dn |
UALn -
|
MEMORIA
(non/shared)
DATE NSTRUCTIUNI
UAL1 | UC1 UAL2 | UC2 UALn | UCn
Arhitectura MIMD
I TOP500 supercomputers sunt bazate pe arhitectura MIMD

 Single instruction, multiple thread (SIMT) este un model de executie folosit in procesarea
paralela unde SIMD este combinata cu multithreading.
e SIMT a fost introdusa de Nvidia 16

https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Supercomputer

e Subcategoriile SIMD din taxonomia lui Flynn includ Array Processing si SIMT, care reprezinta
evolutii ale modelului Single Instruction, Multiple Data pentru procesare masiva paralela pe
date uniforme.

* Array Processing foloseste matrici de procesoare elementare sincronizate, in timp ce SIMT
(Single Instruction, Multiple Threads) extinde conceptul la executie in lock-step pe thread-uri
cu memorie locala, fiind baza arhitecturilor GPU moderne precum NVIDIA CUDA.

* Array Processing in SIMD - Reprezinta procesoare in care o instructiune unica controleaza un
array bidimensional de Processing Elements (PE), fiecare cu memorie locala, executand
operatii simultan pe vectori mari.

Caracteristici cheie: Masking pentru activarea selectiva a PE-urilor; interconectare mesh sau
hypercube; procesare in timp constant pentru vectori mari (ex. ILLIAC IV cu 64 PE).

Avantaje: Eficienta pe operatii matriciale (matrix multiply, FFT); scalabil hardware-wise.

Ex.: Cray-1 vector processor, attached array processors pentru calcul numeric.

e SIMT (Single Instruction, Multiple Threads)

Extensie moderna SIMD, unde o instructiune se aplica unui grup de thread-uri in lock-step, dar
fiecare thread are program counter si memorie privata, permitand divergenta controlata prin
predicate.

Caracteristici cheie: Executie warp (32 thread-uri pe NVIDIA); reconvergenta la sfarsitul
blocurilor conditionale; difera de SIMD clasic prin suport pentru stack pointer individual pe
thread.

Avantaje: Flexibilitate mai mare decat SIMD pur (gestionare date independente); optimizat
pentru grafica si ML.

Ex.: GPU-uri CUDA, OpenCL kernels; ILLIAC IV precursor cu predicate masking.

v

18 13 cu, (:u2 e CU.
Memory lls |l$ 15
(Program al -

DS 0s
§ deta) o PU. — FU i‘s, seed PU

.'\ - =

-

ce

() MISD archMecture (syvstolic array)
Ex. Z = sin(x)+cos(x)+tan(x)

Arhitectura MISD

Mai mult o configuratie teoretica decat una practica
masinile MISD pot fi aplicate la calculatoare de timp real tolerante la erori
Foarte putine abordari, fara produse comerciale

(Ex: C.mmp - Carnegie-Mellon University.)
18

Categorie Paralelism Principal

SISD

SIMD

MISD

MIMD

SISD

SIMD

MISD

MIMD

Instructiuni pipeline

Date vectoriale

Instructiuni
redundante

Task-uri
independente

Avantaj Principal
Simplitate, cost scazut
Eficienta date masive
Toleranta erori

Flexibilitate scalabila

Comparatie Tehnica

Exemple Hardware Aplicatii Optime Limitari

Procesor scalar Sarcini Fara paralelism nativ
secventiale geeksforgeeks

GPU, AVX Imagine, ML Date regulate wikipedia

Pipeline fault- Securitate Rar implementat doc.sling

tolerant

Multicore, clustere General parallel ~ Owverhead sincronizare abhik

Comparatie Sintetica

Dezavantaj Principal Apiicatii Tipice

Fard paralelism nativ Software serial geeksforgeeks
Date neregulate GPU, procesare media wikipedia
Implementari rare Sisteme fault-tolerant doc.sling

Complexitate programare Supercomputere, cloud abhik

e Clasele din taxonomia lui Flynn (SISD, SIMD, MISD, MIMD) prezinta avantaje si dezavantaje distincte,
determinate de capacitatea de paralelism, scalabilitate si tipul de aplicatii suportate.

Aceste caracteristici influenteaza alegerea arhitecturii in functie de sarcinile specifice, de la procesare

secventiala simpla la calcul de inalta performanta.

SISD (Single Instruction, Single Data) - arhitectura clasica secventiala, bazata pe un singur flux de instructiuni si
date.

*Avantaje: Simplitate de implementare si programare; cost redus; eficienta pentru sarcini seriale fara
paralelism; predictibila in executie.

*Dezavantaje: performanta limitata pe date mari; nu exploateaza paralelismul modern; viteza dependenta de
transferul intern de date.

SIMD (Single Instruction, Multiple Data)- Ideal pentru operatii uniforme pe vectori sau matrici, comun in GPU
*Avantaje: eficienta ridicata pe date paralele (imagine, ML); utilizare optima a memoriei; scalabil cu numarul
de elemente procesate simultan (ex. AVX, CUDA).

*Dezavantaje: Necesita date regulate si instructiuni identice; ineficient pe cod ramificat (branching);
programare complexa prin vectorizare.

MISD (Multiple Instruction, Single Data) - Rara, orientata spre redundanta si pipeline-uri specializate.
eAvantaje: toleranta excelenta la erori prin procesare multipla; fiabilitate in sisteme critice (fault-tolerance);
utila in aplicatii pipeline (ex. procesare semnal).

*Dezavantaje: Putin practica; overhead mare de sincronizare; rar implementata in hardware comercial;
eficienta scazuta pe sarcini generale.

*MIMD (Multiple Instruction, Multiple Data) - Cea mai versatila, dominanta in sisteme multicore si clustere.
eAvantaje: flexibilitate maxima pentru task-uri independente; scalabil la mii de procesoare; suporta
shared/distributed memory; ideal pentru HPC si aplicatii generale.

*Dezavantaje: programare dificila (sincronizare, race conditions); overhead de comunicatie in distributed
memory; vulnerabil la bottleneck-uri de memorie.

Diferente si Relatii

* Array Processing este SIMD "pur" cu hardware dedicat (mai multe ALU sincronizate), in timp
ce SIMT este SIMD "software-managed" pe multiprocesoare streaming, combinand elemente
MIMD-like prin divergenta.

Aspect Array Processing (SIMD clasic) SIMT (SIMD extins)
Unitate executie Processing Elements fixe Thread-uri dinamice
Memorie Locala shared Locala per thread
Divergenta Masking strict Predicate reconvergenta

Exemple ILLIAC IV, vector processors NVIDIA GPU warps wikipedia

3.2. Clasificari Moderne

Arhitecturi
Paralele

Arhitecturi de date paralele Arhitecturi Functionale paralele

(Data-parallel Architectures) (Function-parallel architectures)

22

Arhitecturi de Date Paralele

Data-parallel
architectures

—) =

Associative & SIMDs Systolic
architectures neural

architectures

Vector

architectures

23

Arhitecturi Functionale Paralele

Function-parallel
architectures

0 0

Instr. level Thread level Process level
Parallel Arch. Parallel Arch. Parallel Arch.
(ILPs) (TLP) (MIMDs)
@A\@ @/\o
Pipelined VLIWSs Super scalar Distributed Shared
processors processors Memory Memory
MIMD MIMD

24

4. Paralelism - pipeline, superscalar

Paralelism la nivel de instructiune (ILP)

- Pipeline (o linie de asamblare): Tehnica prin care executia mai multor instructiuni
este suprapusa (faze diferite)

- Arhitecturi Superscalare:
e Se folosesc linii de asamblare (pipeline) paralele

Paralelism la nivel procesor/procesare :
— Arii de calcul

— Multiprocesoare

— Multicomputere

25

a. Paralelism la nivel instructiune - Pipeline

S1 S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch decode - fetch 1 execution back

unit unit unit unit unit

(a)

SIH KRB EINEI N ENE I E N EY
S2: KRB ENEINENIEIIENE]
S3: KRB EIES N ENE
S4: KRB EINEINENE
S5: KR ENEENE

1 2 3 4 5 6 7 8 9
Time ——

(b)
e Pipeline de 5 nivele (exemplu: MIPS, Pentium)

e Fiecare instructiune este “sparta” in mai multe etape (faze)

e Fazele instructiunilor se pot executa concurrent/paralel, deoarece exista resurse
(hard) separat pentru fiecare faza (etapa)

=> |a fiecare pas se folosesc unitati functionale diferite
e Proiectare Sincrona => etapa cea mai lenta este dominanta

e Nota: Timpul de executie pentru o singura instructiune nu este imbunatatit!!!
Se imbunatateste rata de executie a instructiunilor

Stages

S1 | S2 | S3 | S4 | S5 | S6
-1

Exemplu de procesor non-pipeline.

1
2
3 C e e .
4 1 Multi cicli pierduti!!
@ | 5 I-1 <«
S| 6 -1
Sl 7|2
Z -2 > e Mai eficienta utilizare a ciclilor.
10 -2 O rata mai mare de executie a instructiunilor:
11 -2 (80486 incepe folosirea pipeline) l
12 -2
Stages
S1 S2 S3 | S4 | S5 | S6
Ptr. k nivele si n instructiuni, nr. necesar de 1 -1
ciclii: 2 -2 -1
S| 3 -2 | 11
k+(n—1) fatade k*n g 4 =2 | 1-1
O 5 [-2 -1
6 [-2 -1
7

-2

Executia in Pipeline

e Pipeline-ul necesita buffere

— Fiecare buffer pastreaza o singura valoare

— Scenariul ideal : sarcini egale la fiecare nivel

e Uneori nu e posibil

e Cel mai lent nivel determina rata fluxului in intregul pipeline

Instruction
fetch

Instruction
decode

B2

Operand
fefch

[nstruction
execution

B4

Result
write back

28

e Cateva motive pentru faze de lucru (durate) inegale
- 0 faza complexa nu poate fi subdivizata in mod convenabil
- 0 operatie are durata variabila de timp pentru a o executa, de ex. preluarea
unui operand depinde de locul unde se afla :registre, m. cache, memoria DRAM
- complexitatea operatiei depinde de tipul de operatie
ADD: poate lua un singur ciclu (4)
MUL: poate dura mai multe cicli (144)

Clockecycle 1 2 3 4 5 6 7 8 9 10

I
I1 IF + ID 1OF ' IE 'WB
|

|
12 IF ' ID 1 OF I IE 'WB

I3 IF | | OF ' IE 'WB

14 IF | ID 1OF 1 TE 'WB
] |

29

e Ciclii pierduti in pipeline
e (Cand un nivel necesita doi sau mai multi tacti, ciclii sunt “risipiti”

Cycles

Stages
exe
S1 | S2 | S3 | S4 | S5 | s6
1 | -1
2 | 12 | 11
3 | I3 | 1.2 | I1
4 -3 | 1-2 | I-1
5 -3 | I-1
6 -2 | -1
7 -2 -1
8 -3 | I-2
9 -3 -2
10 -3
11 -3

Ptr. k nivele si n instructiuni,
nr. de ciclii necesari este:
k+(2n—1) in loc de k+ (n-1)

30

e Performante:
— Viteza sau banda de exec. instructiunilor (MIPS=Milioane Instructiuni/Sec.)

— Latenta/ timp Executie —>nr. de tacti pe care le ia unei instr. ptr. a furniza
date ptr. alta instructiune

e Mecanism complet hardware (pipeline)

e Toate masinile moderne folosesc tehnica pipeline
— A fost tehnica cheie a anilor 80 pentru imbunatatirea performantelor
— Din anii 90 evolutia a fost spre pipeline-uri multiple

31

In fig. faza S4 are 2 pipeline-uri (u si v).

Cycles

b. Arhitecturi Superscalare

Un procesor superscalar are pipeline-uri multiple de executie

Stages
—— S4
S1 S2 | S3 u Vv S5 | S6
1 | I-1
2 | 12 | I-1
3 | 1.3 | 122 | I
4 | -4 | 13 | 1.2 | I-1
5 -4 | 13 | 11 | 12
6 -4 | 13 | 12 | I-1
7 -3 | -4 | 12 | I-1
8 -4 | -3 | 1-2
9 -4 | I-3
10 -4

-Ptr. k stari si n instructiuni,
numarul necesar de ciclii
este: k+n

Pentium: 2 pipeline
Pentium Pro: 3 pipeline

32

32

S1

S2

S5

Instruction
fetch
unit

Instruction
decode
unit

Write
back
unit

Instruction
decode
unit

S3 S4
Operand Instruction
fetch —> execution
unit unit
Operand Instruction
fetch —>| execution
unit unit

Write
back
unit

e Pipeline-uri duale cu 5 nivele cu unitate de FETCH comuna:
— fiecare pipeline are hardware propriu pentru fiecare nivel, furnizand decodare si
executie duplicate;
— Atentie la instructiunile dependente sau incompatibile!
- Acest lucru poate fi realizat de catre compilator sau sunt controlate in timpul rularii
de hardware suplimentar.

33

e De asemenea, poate fi un pipeline cu unitati functionale multiple numai la
unul sau mai multe nivele ale pipeline-ului

S4
ALU
ALU
S1 sS2 S3 / S5
Instruction Instruction Operand Write
fetch | decode - fetch - LOAD back
unit unit unit \ unit
\ STORE
Floating
point

Procesor superscalar cu 5 unitati functionale in faza S4

e Definitia actuala a arhitecturii superscalare : un procesor care poate
executa mai multe instructiuni pe un ciclu de ceas

34

c. Paralelism la nivel Procesor

e Se refera la un calculator tip multiprocesor

SIMD Processor: Single Instruction Multiple Data

Control unit

é Broadcasts instructions

HEHEHEHHHHH]
HEHBEHBHHHHH
HHHEHHHHHH
HEHBEHHHHHH .
> 8 x 8 Processor/memory grid
Processor HHEHHBEHHBHHHH
>EIEEIEIEEIEEI
Memory HEHBEHBEHHHHH
HEHEHHBHHHH]

Arie de procesare de tip ILLIAC IV

35

Paralelism la nivel Procesor

Local memories

N N

Shared Shared

memory memory
CPU CPU CPU CPU CPU CPU CPU CPU

Bus Bus

(@) (b)

e Sistem Multiprocesor :

a) Multiprocesor cu un singur bus : UCP multiple, independente partajaza o
memorie comuna si alte resurse

b) Un multi-computer cu memorii locale:

e Incerca sa reduca numarul de conflicte - procesoarele comunica prin

intermediul schimbului de mesaje
36

5. Legea lui Amdahl (1967 — IBM)

» Accelerarea prelucrarii prin folosirea de unitati de procesare paralele

S P

/

/N

Serial Run

Parallel Run

A
S+ P \
P

Speedup < ST PN

e S (%) - procentul de instructiuni secventiale prin natura lor
e P=1-S(%) - procentajul de instructiuni paralelizabile
e N este numarul de procesoare folosite in calculul paralel

37

S+1-8§ 1

Speedup < Speedup <
1-8§ -5
S+—— S+——
N N
Ex. N=10, 10% secvential, 90% paralel - Sp=5.26

e Daca consideram ca problema e infinit paralelizabila (S=0), se obtine urmatoarea
limita superioara pentru accelerarea procesarii:

1 1 Amdahl's Law
Speedup < TS 10 2000 —
_ _ A
S+ —— 0+— 18.00 //
N N / Parallel Portion
16.00 / ———50%
— T75%
14.00 0%
—05%
Speedup< N 1200
g 10.00 /
& A LT
.00
Exemple:
6.00 A
p=50%, n->c => S=2 4.00 V/ ——
.-r"/.......‘
p=75%, n->e => S=4 ==
0.00
= o =t] w o™ = =] =t] ; fg w
P=95%, n->» => S=20 "EEERdIIEEEEG
Number of Processors

Legea lui Lee = Legea Amdahl generalizata

q, - procentul din program ce poate fi executat cu k procesoare
t, - timpul de rulare secventiala a programului

P
1
t1:Zth1 tp=iq"tl 9e =—

k=1 k:17 P
)4
{ qutl S = 1 — P
§,=-L=L ’ 1i1 il
g Z% piok Sk
ok
V4
CSa ? " log,(p)
o ko k

39

Teme de studiat.

https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/

How do Graphics Cards Work? Exploring GPU Architecture

https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://serverguy.com/comparison/cpu-vs-gpu-vs-tpu/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.linkedin.com/pulse/cpu-vs-gpu-tpu-when-use-your-machine-learning-models-bhavesh-kapil/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.backblaze.com/blog/ai-101-gpu-vs-tpu-vs-npu/
https://www.youtube.com/watch?v=h9Z4oGN89MU

	Slide 1: Curs 13
	Slide 2: 1. Instructiune. Ciclu masina. Stare.
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 4. Paralelism - pipeline, superscalar
	Slide 26: a. Paralelism la nivel instructiune - Pipeline
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41

