“Invata din greselile altora, pentru ca nu ai timp sa le faci pe toate.” S. Freud

Curs 12
Instructiuni Speciale
pentru Grafica si Multimedia

* Cresterea performantei microprocesoarelor este datorata :

- Cresterii fecventei de ceas
- Imbunatatirii arhitecturii (ft. importante: pipeline/cache/SIMD)

- Intel a analizat aplicatiile multimedia si a stabilit ce au in comun:
* tipuri de date mici (8-bit/pixel, 16-bit /sample-audio)
* oQperatii recurente
e paralelism inerent

Plll = Pll + SSE (70 instr.) — 8 reg x 128b - FP-DP
P4= PIIl + SSE2 (144 instr.) + SSE3 (13 instr) +SSE4(54) +SSE5 (170) +... (AVX)

\ o — \ /o ol = b o - ~
Advanced Vector Extensions

Pentium MMX (+57 instr
8reg. x 64b

Pentium

Set extins 486 (FPU)

Set extins 386
Instr. pe 32 biti +noi

Set extins 286

SSE = SIMD Streaming Extef}?n
MMX=Multi Media eXtention

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

Intel Architectures and SIMD

8086

286

386

486

Pentium
Pentium MMX

Pentium lll (1999)
Pentium 4 (2000)

Pentium 4E (2004)

Pentium 4F

Core 2 Duo (2007)
Sandy Bridge (2011)
Haswell (2013)
Knights Landing (2016)

x86-16

Xx86-32

MMX
SSE
SSE2

SSE3

x86-64 / em64t

SSE4
AVX
AVX2
AVX-512

MultiMedia eXtensions

Streaming SIMD Extensions

Advanced Vector eXtensions

Detectie MMX/SSE

mov eax, 1 ; cerere info versiune
cpuid ; suportat de la Pentium
test edx, 00800000h ;bit 23 MMX

; 02000000h (bit 25) SSE

; 04000000h (bit 26) SSEZ2
nz HasMMX

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1

0

EDX

PBE—Pend. Brk. Er\.l.J
TM-=Therm. Monitor
HTT—Multi-threading ———
SS—Self Snoop

SSE2-SSE?2 Extensions
SSE-SSE Extensions

EXSR-_FEXSAVE/EXRSTOR

MMX-MMX Technology

ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store
CLFSH-CFLUSH instruction
PSN—Processor Serial Number
PSE-36 — Page Size Extension
PAT—Page Attribute Table
CMOV-Conditional Move/Compare Instruction
MCA—Machine Check Architecture
PGE-PTE Global Bit
MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT
APIC-APIC on Chip
CX8-CMPXCHGSB Inst.
MCE—Machine Check Exception
PAE—Physical Address Extensions
MSR-RDMSR and WRMSR Support
TSC-Time Stamp Counter
PSE—Page Size Extensions
DE-Debugging Extensions
VME—Virtual-8086 Mode Enhancement

FPU-x87 FPU on Chip

De ce Instructiuni Multimedia?

e |deea care sta la baza setului MMX si a noilor seturi — Multimedia
Instructions Sets' este ca : mai multe date de acelasi tip sunt procesate

simultan (SIMD)
e Programul executa o aceiasi operatie asupra datelor pe care le proceseaza

® |n general, este mai rapid a prelucra aceste date simultan (paralel) decat
secvential

e Aplicatiile Multimedia si de Comunicatii consuma resurse de calcul
semnificative

eSprijinul oferit de hardware-ul specific permite accelerarea procesarii

Scopul MMX

e Extensiile SIMD au fost concepute initial pentru a accelera aplicatiile
multimedia si de comunicatii

- grafica si prelucrarea imaginilor
- prelucrarea video si audio
- recunoastere a vorbirii, ...

e Poate fi folosit si pentru alte calcule stiintifice intensive

Ce reprezinta arhitectura SIMD?

e O masina SIMD beneficiaza de proprietatea fluxului de date numita
paralelismul datelor

e Paralelismul datelor apare cand avem o cantitate mare de date de
acelasi tip, care necesita procesarea prin aceiasi metoda/ instructiune

Kemels 000 gltl::atﬂ'ﬂ
o o . SO & s
°, o7 Ve, OO R
<O L/ SO . QK
4 Sy £

B Instructions
EEE

[[] Data 1T

B Results NN
Cutput Streams

Operatii cu Vectori

Adunare vectoriZ=X+Y X, Y X, + ¥,
for (i=0; i<n; i++) X, .\ Vol _| %2+,
z[i] = x[i] + v]i]; U I I

'xn yn 'xn +yl’l

Scalare vectori Y =a* X X, a*x,
for(i=0; i<n; i++) x| a*x,
ylil = a*x[i; “ R

X, a*x,
* % N1

Dot product (suma de *)

. . . *a V2 l_ 4 * *

for(i=0; i<n; i++) * =XV Ty, A X, Y,

r += x[il*yli;) Ly,

11

eC=A+B

Operatii cu vectori - SISD si SIMD

For (i=0:i<n; i++) c[i] = a[i] + b[i]

C
A | 9.08.07.06.0[5.04.0[3.0/2.0[1.0
;>>5ED -1 10(9.0(8.07.0/6.0/5.0 #.0/3.02.0
B | 1.01.01.01.0[1.01.0[1.0/1.0[1.0
A |7.05.03.01L.0
8.0/6.0(4.02.0 \ SIMD
:j>><3+uﬁf#fesnen4ﬂzn .
9.0(7.0/5.03.0
1.01.01.01.0 >+ — |
B -

1.01.01.01.0

12

Dezvoltarea IA-32 SIMD

* MMX (MultiMedia EXtension) a fost introdus in 1997 (Pentium MMX

si Pentium II).
-SSE (Streaming SIMD Extension) a fost introdus la Pentium llI.
-SSE2 a fost introdus la Pentium 4
-SSE3 a fost introdus la Pentium 4 cu suport hyper-threading technology

 Dupa analizarea multor aplicatii existente, cum ar fi grafica, MPEG,
muzica, recunoasterea vorbirii, jocuri, prelucrare de imagini s-a
descoperit ca multi algoritmi multimedia executa aceleasi
instructiuni pe mai multe pachete de date dintr-un set mare de date.

* Elemente tipice sunt de mici dimensiuni: 8 biti/pixel, 16 biti pentru
audio, 32 biti pentru grafica si de calcul general.

13

MMX - arhitectura software

MMX Registers
Eight 64-Bit

Tipuri de date

Leneral-Purpose

Reqisters
Eight 32-Bit

Packed Byte: 8 bytes packed into B4 bits
[=] 2 7 0

Packed Viford: 4 words packed into &4 bits
(== L= 0

Packed Doubleword: 2 doublewords packed into 64 bits

B3 22 3 0

Packed Quadword: One B4 bit quantity
B3

m

*8 registre de 64-biti
e Registrele pot fi subdivizate in:

e 8 elemente x 8-biti - intregi (packed byte)

e 4 elemente x 16-biti — intregi cu/fara semn (packed word)

e 2 elemente x 32-biti - intregi cu/fara semn (packed double word)

e Registrele MMX sunt partajate cu operatiile flotante (FPU)

14

Registre MMX- Compatibilitate

® Nu s-au adaugat noi exceptii sau stari la procesor

® Registrele MMX reprezinta registre alias ale FPU: - campul
exponent, care corespunde bitilor (64-78) ale reg. FPU si bitul de semn (bit
79) sunt setati la “1”, facand ca valoarea din registru sa fie NaN (Not a
Number) sau infinit, cand este vazuta ca o valoare flotanta

Flaaling-point ragisters

A)
MRAG /

MM regif.tﬁrs 15

Exemplu de prelucrare

® Pixelii sunt in general intregi pe 8/16-biti - se pot impacheta cate 8/4
pixeli intr-un registru MMX de 64-biti

® O instructiune MMX ia cei 4 pixeli deodata dintr-un registru MMX,
executa operatia aritmetica sau logica pe toate elementele in paralel
si scrie rezultatul intr-un registru MMX

MMX™

Vector size: 64bit

Data types: 8, 16 and 32 bit integers
VL: 2,4,8

For sample on the left: Xi, Yi 16 bit
X4opY4 X30pY3 X20pY2 XlopY1 integers

16

Cum opereaza setul MMX ? Instructiuni MMX : 57

Tipuri de instructiuni:

- transfer date (movqg, movd)

- aritmetice (padd, psub, pmul ...)
- comparatii (pcmpeq, pcmpgt)

- conversii (pack,punpck)

- logice (pand, pandn, por, pxor)

- deplasare (psll, psrl, psra)

- management stare (emms)

add, subtract, multiply, compare, shift, data conversion, 64-bit data move, 64-bit logical
operation and multiply-add for multiply-accumulate operations.

17

Aritmetica “wrap around” = modulo 2"

e Cu aritmetica modulo 2™:

La un rezultat care este in afara domeniului (CF=1/ overflow este
ignorat) numai bitii LSB sunt pastrati din destinatie (rezultat)

“Roata numerelor” fara semn reprezentate pe 4 biti

|5 [1
LED] oy Wi .

0ol

0] 10
b

ol *

b
[Wik i

“Roata numerelor” cu semn reprezentate pe 4 biti

-1 1] l
LIT] O O] |

3
D01

0110

i

5 ol

1000

Packed Add Word cu wrap around (modulo 2)

e Fiecare adunare este independenta
e La cea din dreapta apare depasire si trunchiere

a3 a2 al FFFF
F F F F
b3 b2 b1 | 8000h

al+bl

az+b2

+ + + +

OxAB

OxAB

-

-

0x40

0x40

0x40

0x40

0x40

0x40

Obtinerea efectului wrap around pe culoarea pixelilor (modulo 28);

OxBF

OxEB

19

Saturarea aritmetica

Saturare: daca rezultatul operatiei este overflow/underflow,
rezultatul este limitat la cea mai mare/mica valoare reprezentabila

Aceasta este importanta la calculul pixelilor si se evita un “wrap-
around” care ar cauza trecerea unui pixel alb brusc la negru (de ex.)

Nu exista "saturation mode bit”: ptr. ca un nou bit de mod necesita
modificarea SO

Se folosesc instructiuni distincte ptr. a obtine rezultat “wrap-around”
sau cu saturatie

20

Gamele de saturare

Data Type Lower Limit Upper Limit
Hexadecimal Decimal Hexadecimal Decimal
Signed Byte 80H -128 7FH 127
Signed Word d000H -32,768 /FFFH 32,767
Unsigned Byte 00H 0 FFH 255
Unsigned Word 0000H 0 FFFFH 65,535

e Saturarea aritmetica da un raspuns pentru multe situatii de depasire.
e de ex., la calculul culorilor, saturarea determina ca o culoare sa

ramana ,purd” (negru/alb) fara a permite inversarea

IR W 0x7F | 0xAB | 0xAB | 0xC8 | OxFF
+ T + T + T T T
Ox40 | Ox40 | Ox40 | Ox40 | Ox40 | 0x40 | 0x40 | 0x40
I 0xBF | 0xEB | OXEB | OXFF | OXFF

Packed Add Word cu unsigned saturation

a a’ al
¥ ¥ ¥
b3 b2 bl
as3+bh3 | a2+b2 | al+bl

23

Efectul Wraparound;

Imaginea originala pe nivele de gri;

Efectul de saturatie

24

Setul de Instructiuni MMX

Category Wraparound Signed Unsigned Saturation
Saturation
Moduito 2”n
Arithmetic Addition PADDE, PADDW, | PADDSE, FADDSW | PADDUSE, FADDUSW
PADDD FSUBSB, PSUBSW | PSUBUSE, PSUBLUSW
Subtraction PSUBE, PSUBW,
PSUBD
Multiplication FMULL, PMULH
Multiply and Add | PMADD
Comparison Compare for Equal | PCMPEQE,
PCMPEQW,
PCMPEQD
Compare for PCMPGTPE,
Greater Than PCMPGTFW,
PCMPGTFD
Conversion Pack FACKSSWE, PACKUSWE

PACKS5DW

25

Setul de Instructiuni MMX

Unpack Unpack High PLUNPCKHEW,
PUNPCKHWD,
PUNPCKHDO
Unpack Low PUNPCKLBW,
PUNPCKLWD,
PUNPCKLDQO
Packed Full Quadword
Logical And PAND
And Not PANDN
Or POR
Exclusive OR PXOR
Shift Shift Left Logical | PSLLW, PSLLD PSLLO
Shift Right Logical | PSELW, PSRLD PSRLO
Shift Right PSRAW, PSRAD
Arithmetic

26

Setul de Instructiuni MMX

Doubleword Transfers Quadword Transfers
Data Register to MOVD MOVQ
Transfer Reqister MOVD MOVQ
Load from MOVD MOVQ
Memory
Store to Memaory
Empty MMX EMMS

State

http://tommesani.com/index.php/simd/39-mmx-conversion.html

27

http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html

Ex: adun o constanta la un vector

char 4d[]={15, 15, 15, 15, 15, 15, 15, 15};8 bytes
char vect[]={75,76,78,...,97,98}; 24 bytes

_asm{

movq mml, d ; mml=d
mov ¢cx, 3 ; ex=3
mov esi, O ; esi=0
L1: movqg mmO, vect[esi] ; mmO=vect (8 wvalori)
paddb mmO, mml ; mmO=vect+d
movq vect[esi], mm0 ; vect=vect+d
add esi, 8 ; esi=esi+8
loop L1 ; 1f cx#0 go to L1
emms ; exit MMX

Multiply-Accumulate

e Operatiile MAC (* +) sunt fundamentale pentru multi algoritmi de
prelucrare a semnalelor ca : produse de vectori, produse de matrici,

filtre FIR, IR, FFT, DCT etc.

a a’ al al

#+ #+ *+ #+

b3 b2 bl b0

a3*b3+a2*b2 |a1*b1+aﬂ*bﬂ

29

Packed Compare

Nu exista flaguri noi de conditie

Nici unul din flagurile de conditie nu este afectat de aceasta
instructiune

Rezultatele pot fi folosite ca masti ptr. selectarea diferitelor
intrari folosind operatii logice, elimindnd salturile.

23 45 16 34

gt ? gt? gt? gt ?

31 7 16 67
0000h | FFFFh | 0000h | 0000h

30

Conditional Select
If (cond) True

Ra :=Rb
else Ra:=Rc
Presupunem ca Rx=11111...111b, daca conditia este adevarata
Si Rx=00000...000b, daca conditia este falsa.

Ra poate fi calculat cu expresia logica :

Ra = (Rb AND Rx) OR (Rc NAND Rx)

e Chroma Keying, de exemplu, demonstreaza cum selectia conditionata, folosind setul
de instructiuni MMX, elimina predictiile gresite ale salturilor, in plus realizand mai
multe operatii de selectie in paralel.

e Text overlay (subtitrarea) pe video ar putea beneficia de aceasta tehnica

OBS. Chroma keying este o tehnica pentru a mixa (fuziona) doud imagini sau cadre impreund, in
care o culoare (sau o mica gama de culori) de la o imagine este eliminata (sau facuta
transparent), si dezvaluie o altd imagine in spatele ei. 33

Conditional Select — aplicatie Chroma Keying

for (i=0; i<image _size; i++) |
if (x[il ==gpgep) new_imagelil =ylil;
eise new_imageli] = x|il;

Procesarea

- se iau pixelii din imaginea x (cu femeia pe fond verde)

- O instructiune de comparare construieste o masca pentru aceste date.
- Aceasta masca este o secventa de biti care sunt fie toti “1” fie toti ,0”
- Acum stim care este fondul nedorit si ce dorim sa pastram

34

Creare Masca

(packed compare for equality)

Presupunem ca pixelii alterneaza green/not_green

X1=green [XZ2l=green | Xi=qgreen [X4!=green
LCIME green green green green
PCMPEQW MMO, GREEN ‘L
bitrmask OxFFFF | 0=0000 I]:-:FFFF\ I]:-:I]I]I][IR

4 pixelicycle

Conditional Select

pandn

Combine: PANDN, PAND, POR

£—
DxFFFF [Ox0000|oxFFFF [Qx0000
<€
H1 2 H3 He

PANDN
DEST « (NOT DEST) AND SRC;

[par

pand

Qw0000 Ha o x0000 Hd
T Qx0000 T3 Q0000
T Ha T3 Ha

OxFFFF

Q0000

axFFFF

Q0000

T

Ly

L

el

Example: Conditional Select / Branch Removal

new |mage

® Packed Comparison
(PCMPCC) and the

logical instructions enable

conditional select

operations in parallel and
without data dependent

Kl=green | X2 = greenl

branches. if (X[i] '= green) then
PCMPEQW | green oreen oreen oreen new_imagel[i] = X[i]
else
/ \ new_imagel[i] = Y[i]
0xFFFF 0=x0000 0xFFFF I 0x0000 0xFFFF 0x0000 0=FFFF 0x0000
PANDN
X1 X2 x3 |l xa PAND Y1 Y2 Y3 Y4
MOVQ MM1, X
PCMPEQW MM1, GREEN 0x0000 X2 0x0000 X4
MOVQ MM2, MM1
PANDN MM1, X POR Y1 0x0000 Y3 0x0000
PAND MM2, Y
POR MM1, MM2 . .
MOVQ New, MM1 JSinished pixels | v X2 Y3 X4

Conditional Select !!!

* Eliminarea ramificatiilor (salturi conditionate)
e Fara tehnologia MMX fiecare pixel este procesat separat si necesita
un salt conditionat

e Folosind setul MMX: (8 pixeli x 8 biti) pot fi procesati in paralel si nu
implica folosirea salturilor !!!

MOVQ MM1l, X
PCMPEQW MM1l, GREEN
MOVQ MM2Z, MM1
PANDN MM1l, X
PAND MMZ2, Y

POR MM1, MM.Z
MOVQ New, MMl

39

Aplicatie: diferenta cadrelor

B

40

(A-B) or (B-A)

MOVQ mml, A //move 8 pixels din imag. A
MOVQ mm2, B //move 8 pixels of imag. B
MOVQ mm3, mml // mm3=A

PSUBSB mml, mm2 // mml=A-B

PSUBSB mm2, mm3 // mm2=B-A

POR mml, mm2 // mml=|A-B|

42

EX. image fade-in-fade-out

A B
A*a+B*(1-o) = B+a(A-B

43

Vector Dot Product (suma de produse)

® Vector dot product este unul dintre cei mai utilizati algoritmi in
prelucrarea semnalelor (imagini, audio, video si voce)

® PMADD realizeaza 4 * si 2 + simultan, iar cuplat cu PADD, 8 operatii
multiply-accumulate pot fi executate: 2 PMADD si 2 PADD

x= Y a(i) * c(i)

all a’l ad a5 ab ar
Pmaddwd 4 X * * 4 X 4 X

O 'l C c3 - 5 ch cy

a0 c0+a1* a2 2 +a3* 3 ad*cd+as* e (abk*ch+altof

- -
Shift to right precision if needed Shift to right precision if needed

Paddd +

=

Vector Dot Product - Comparatie

fara MMX cu MMX
Load 16 4
Multiply 3 2
Shift 3 2
Add 14 1
Miscellaneous —— 3
Store 1 1
Total 40 13

53

MMX

Pro si Contra
Pro:

eRealizeaza mai multe calcule simultan

e Poate utiliza diferite tipuri de date

Contra:

e Datorita partajarii registrelor nu poate executa in acelasi
timp operatii MMX si in virgula flotanta

; void EndMMX()

; global _EndMMX

_EndMMX: emms ; Allow CPU to use floating point
ret

* Necesita compilatoare noi ptr executia instructiunilor MMX

e Opereaza numai cu valori intregi

55

MMX, SSE and AVX

e o e mm mm e e e e e o e e e e e e e e mmm mmm mmm m E— Ey

I i
I |
I |
I |
I |
| |
I |
I |
| |
| |
1 !

CON |

T O S S S G S I I S N N S S S S N G S S S S G G O S S S Gae e

1997 1999 2001 2011

AVX — Advanced Vector Extensions

Operatiile MMX sunt limitate la valori intregi

— extensiile SSE and AVX permit si operatii cu date in virgula mobila
= MMX sunt rar folosite in procesoarele moderne — se folosesc in
schimb SSE sau AVX

56

@ SSE - Streaming SIMD Extension s-a introdus la Pentium lll, si
este suportat de majoritatea procesoarelor moderne

- Registre de 128 biti - suport ptr. operatii single-precision floating point

- SSE2 — Streaming SIMD Extension 2 s-a introdus la Pentium 4

- Suporta si operatii double-precision floating point

- Alte extensii: SSE3, SSSE3, SSE4.1, SSE4.2 ...

® Instructiunile cu vectori au fost introduse treptat si extinse in mai
multe generatii de procesoare

— extensiile SSE impreuna includ peste 400 de instructiuni

® Programarea cu AVX este similara, dar lungimea vectorilor si numele

instructiunilor difera

128

X4opY4

X30pY3

X2opY2

XlopY1l

Intel® SSE
Vector size: 128bit
Data types:
8,16,32,64 bit integers
32 and 64bit floats
VL: 2,4,8,16
Sample: Xi, Yi bit 32 int / float

1999

2000

Evolutia continua a setului SSE

2004

2006

2007

2008

2009

2010\11

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AES-NI

AVX

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

13 instr

Complex
Data

32 instr
Decode

47 instr
Video

Graphics
building
blocks

Advanced
vector instr

8 instr

String/XML
processing

POP-Count
CRC

7 instr

Encryption
and
Decryption

Key
Generation

~100 new
instr.

~300 legacy
sse instr
updated

256-bit
vector

3 and 4-
operand
instructions

58

Registre vector SSE

m SSE introduce un nou set de 8/16 reg. vector de 128-biti , XMMO-XMM15
— 8 reg. XMM in mod non 64-biti
— 16 reg. XMM in mod 64-biti
m Reg. XMM sunt registre fizice reale nu reg. alias (ca MMO0-MM?7)
— independente de reg. de uz general sau de reg.FPU/MMX
m Registrele XMM pot fi accesate in mod 32-bit, 64-bit sau 128-bit
— Numai ptr. operatii pe date, nu pe adrese

m MXCSR este un reg. de 32 biti de control si stare XMMO

XMM1

ePermite operatii pe numere impachetate in virgula mobila XMM2

XMM3

simpla precizie XMMA

XMM5

XMM6

XMM7

XMM8

XMM3

XMM10

XMM11

XMMA12

XMM13

XMM14

XMM15

127

— 50 ptr. operatii SIMD single-precision floating-point (SPFP)

Instructiuni SSE

m Extensia originala SSE adauga 70 de instructiuni noi la setul de instructiuni x86

— 12 ptr. Operatii SIMD cu intregi

— 8 ptr. Control cache

— extensiile urmatoare au adaugat mai multe instructiuni

m Supporta ambele tipuri de instructiuni packed/ scalar SPFP

— operatii pe valori impachetate de 32-bit floating-point (sufix P)

— operatii pe scalar de 32-bit floating-point (32 LSB), (sufix S)

- Compilatoarele folosesc instr. SSE scalare ptr. operatiile flotante in locul
instructiunilor x87 ale FPU

Source 1

Source 2

Destination

X3 X2 X1 X0
Y3 Y2 Y1 Y0
X3GY3 | X2&Y2 | X1&Y1 | X0&RY0

Source 1

Source 2

Destination

X3 X2 X1 X0
Y3 Y2 Y1 Y0
X3 X2 X1 X0&Y0

Tipuri de date ptr. SSE/SSE2
4x floats
D D D G

2x doubles

16x bytes

8x words

4x dwords

2x qwords

1x dgword

Anything that fits into 16 bytes

Figure 1. SSE/S5E2 data types

64

SSE2

m Streaming SIMD Extension 2 (Pentium 4)
- extinde SSE si inlocuieste instructiunile vectoriale MMX cu intregi

m Extinde setul SSE cu suport pentru:

- valori n virgula mobila cu dubla precizie impachetate

- valori intregi impachetate - adauga peste 70 de instructiuni noi setului
de instructiuni

m Functioneaza pe entitati de 128 biti din registrele XMM
- datele trebuie aliniate la limitele de 16 biti, atunci cand sunt stocate in memorie
- restrictiile privind alinierea au fost ulterior relaxate
- au fost introduse instructiuni de load/store nealiniate

65

AVX - Advanced Vector Extensions

— suportat de procesorul Intel Sandy Bridge(2011) si urmatoarele

— extinde reg. vectoriali la 256 biti, YMMO - YMM15

- Instructiunile SSE functioneaza pe jumatatea inferioara a registrelor YMM

m Introduce noi instructiuni cu trei operanzi

- o destinatie si doi operanzisursa:c=a @ b

m AVX-512 este suportat in microarhitectura Knight Landing

m Procesorul Intel Xeon Phi accepta o unitate de procesare vectoriala de 512biti
- nu este compatibil cu SSE sau AVX

256 bits 128 bits

Ylvlyj_o
255 128 127 0

X8 X7 |X6 X5 X X3 X Xt Intel® AVX YMyﬂ.
. Vector size: 256hit

Y7 [Y6 Y5 'va Y3 Y2 vt Data types: 32 and 64 bit floats
V0L: 4,8, 16
Sample: Xi, Yi 32 bit int or float

Y8

YMyﬂE

X8opY! X70pY! X6opY: XSopY5 X4opY: X3opY. X20pY. XiopY 255 123 127 0
It #

Tipuri de date ptr. AVX

. ' 2x double

8x 16-bit word

S5E and AVX-128 types

4x 32-bit doubleword

2x 64-bit quadword

1x 128-bit doublequadword

AVX-256 types

8x float

67

Caracteristici ale AVX

Key Intel’ Advanced Vector Extensions
(Intel” AVX) Features

KEY FEATURES BENEFITS
e Wider Vectors ¢ Up to 2x peak FLOPs (floating point
— Increased from 128 to 256 bit operations per second) output with good

— Two 128-bit load ports power efficiency

* Enhanced Data Rearrangement * Organize, access and pull only necessary

— Use the new 256 bit primitives to data more quickly and efficiently
broadcast, mask loads and permute data

* Three and four Operands: Non » Fewer register copies, better register use for
Destructive Syntax for both AVX 128 and both vector and scalar code
AVX 256

* Flexible unalighed memory access * More opportunities to fuse load and
support compute operations

* Extensible new opcode (VEX) * Code size reduction

Intel® AVX is a general purpose architecture,

expected to supplant SSE in all applications used today

Exemple de generare cod

.Bl.2::
movaps Xxmm2, A[rdx*8]
Xorps xmmO, xXmmO
cmpltpd XmmO, xXmm2
movaps Xxmml, B[rdx*8]
andps Xmml, XmmO
- andnps xmmO, C[rdx*8]
orps Xmml, xmmO
addpd Xmm2, xXmml
movaps A[rdx*8], xmm2
add rdx, 2
cmp rdx, 1000
\ j1 .B1.2 SSE2
1|r .Bl.2::
.B1.2:: movaps Xxmm2, A[rdx*8]
vmovaps ymm3, A[rdx*8] XOrps xmm0, xmmO

vmovaps ymml, C[rdx*8] cmpltpd xmmO, Xmm2

vempgtpd ymm2, ymm3, ymmO movaps xmml, C[rdx*8]
vblendvpd ymm4, ymml, B[rdx*8], ymm2 blendvpd =xmml, B[rdx*8], xmmO
vaddpd ymmS, ymm3, ymmé addpd xmm2, xmml

vmovaps A[rdx*8], ymmS5 movaps A[rdx*8], xmm2

add rdx, 4 add rdx. 2

cmp rdx, 1000 '

j1 .B1.2 AV X ng f;’l‘izm“ SSE4.1

Software and Services Group

Alte arhitecturi SIMD

® Graphics Processing Unit (GPU): nVidia 7800, 24 pipelines
(8 vector/16 fragment)

150 = =®= NVIDIA [NV30 NV35 NV40 G70]
=1 =l= ATI[R300 R360 R420]

~ Intel Pentium 4
100 __ (single-core except where marked)

GFLOPS

dual-core

2002 2003 2004 2005

Year
71

Procesoare cu caracteristici SIMD

Intel
AMD
e MMX:
e 3DNow!

e Pentium MMX . K6-2
* Pentium Pro o K6-3
e Pentium I
e Celeron

e SSE: e Advanced 3DNow!
e Pentium IlI e Athlon
e Pentium IV e Duron

e Celeron 2

72

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6: Detectie MMX/SSE
	Slide 7
	Slide 8
	Slide 9: Scopul MMX
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: MMX - arhitectura software
	Slide 15: Registre MMX- Compatibilitate
	Slide 16: Exemplu de prelucrare
	Slide 17: Cum opereaza setul MMX ? Instructiuni MMX : 57
	Slide 18: Aritmetica “wrap around” = modulo 2n
	Slide 19: Packed Add Word cu wrap around (modulo 2)
	Slide 20: Saturarea aritmetică
	Slide 21: Gamele de saturare
	Slide 23: Packed Add Word cu unsigned saturation
	Slide 24
	Slide 25: Setul de Instructiuni MMX
	Slide 26: Setul de Instructiuni MMX
	Slide 27: Setul de Instructiuni MMX
	Slide 28
	Slide 29
	Slide 30: Packed Compare
	Slide 33: Conditional Select
	Slide 34: Conditional Select – aplicatie Chroma Keying
	Slide 35
	Slide 36: Conditional Select
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 51: Vector Dot Product (suma de produse)
	Slide 53: Vector Dot Product - Comparatie
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71
	Slide 72

