
1

Curs 12
 Instrucţiuni Speciale

pentru Grafică şi Multimedia

“ Invaţă din greşelile altora, pentru că nu ai timp să le faci pe toate.” S. Freud

2

• Cresterea performantei microprocesoarelor este datorata :

- Cresterii fecventei de ceas
- Imbunatatirii arhitecturii (ft. importante: pipeline/cache/SIMD)

- Intel a analizat aplicatiile multimedia si a stabilit ce au in comun:
• tipuri de date mici (8-bit/pixel, 16-bit /sample-audio)
• operatii recurente
• paralelism inerent

3

Instrucţiuni
de bază

8086/8088

Set extins 286

Set extins 386

Instr. pe 32 biti +noi

Set extins 486 (FPU)

Pentium

Pentium MMX (+57 instr)
 8reg. x 64b

PIII = PII + SSE (70 instr.) – 8 reg x 128b – FP-DP

P4= PIII + SSE2 (144 instr.) + SSE3 (13 instr) +SSE4(54) +SSE5 (170) +... (AVX)

Advanced Vector Extensions

SSE = SIMD Streaming Extension

MMX=Multi Media eXtention

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

5

386
486
Pentium
Pentium MMX

Pentium III (1999)

Pentium 4 (2000)

Pentium 4E (2004)

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086
286

Pentium 4F
Core 2 Duo (2007)
Sandy Bridge (2011)
Haswell (2013)
Knights Landing (2016)

ArchitecturesProcessors

AVX

MultiMedia eXtensions

Streaming SIMD Extensions

Advanced Vector eXtensions
AVX2

AVX-512

Intel Architectures and SIMD

6

Detectie MMX/SSE

mov eax, 1 ; cerere info versiune

cpuid ; suportat de la Pentium

test edx, 00800000h ;bit 23 MMX

 ; 02000000h (bit 25) SSE

 ; 04000000h (bit 26) SSE2

jnz HasMMX

7

8

De ce Instructiuni Multimedia?

• Ideea care sta la baza setului MMX si a noilor seturi – Multimedia
Instructions Sets' este ca : mai multe date de acelasi tip sunt procesate
simultan (SIMD)

• Programul executa o aceiasi operatie asupra datelor pe care le proceseaza

• In general, este mai rapid a prelucra aceste date simultan (paralel) decat
secvential

• Aplicatiile Multimedia şi de Comunicatii consumă resurse de calcul
semnificative

•Sprijinul oferit de hardware-ul specific permite accelerarea procesarii

9

Scopul MMX

⚫ Extensiile SIMD au fost concepute inițial pentru a accelera aplicațiile
multimedia și de comunicații
- grafica și prelucrarea imaginilor
- prelucrarea video și audio
- recunoaștere a vorbirii, …

⚫ Poate fi folosit și pentru alte calcule științifice intensive

10

Ce reprezinta arhitectura SIMD?

• O maşină SIMD beneficiază de proprietatea fluxului de date numită
paralelismul datelor

• Paralelismul datelor apare când avem o cantitate mare de date de
acelasi tip, care necesita procesarea prin aceiaşi metodă/ instructiune

11

Operatii cu Vectori

⚫ Adunare vectori Z = X + Y

for (i=0; i<n; i++)

z[i] = x[i] + y[i];

⚫ Scalare vectori Y = a * X

for(i=0; i<n; i++)

y[i] = a*x[i];

⚫ Dot product (suma de *)

 for(i=0; i<n; i++)

 r += x[i]*y[i];





















+

+

+

=





















+





















nnnn yx

yx

yx

y

y

y

x

x

x

............

22

11

2

1

2

1





















=





















nn xa

xa

xa

x

x

x

a

*

......

*

*

...
*

2

1

2

1

nn

nn

yxyxyx

y

y

y

x

x

x

*......**
......

2211

2

1

2

1

+++=





















•





















12

Operatii cu vectori - SISD si SIMD

⚫ C = A + B

⚫ For (i=0;i<n; i++) c[i] = a[i] + b[i]

A

B

1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

13

Dezvoltarea IA-32 SIMD

• MMX (MultiMedia EXtension) a fost introdus in 1997 (Pentium MMX
si Pentium II).

-SSE (Streaming SIMD Extension) a fost introdus la Pentium III.
-SSE2 a fost introdus la Pentium 4
-SSE3 a fost introdus la Pentium 4 cu suport hyper-threading technology

…
• După analizarea multor aplicații existente, cum ar fi grafica, MPEG,

muzică, recunoașterea vorbirii, jocuri, prelucrare de imagini s-a
descoperit că mulți algoritmi multimedia executa aceleași
instrucțiuni pe mai multe pachete de date dintr-un set mare de date.

• Elemente tipice sunt de mici dimensiuni: 8 biți/pixel, 16 biți pentru
audio, 32 biți pentru grafică și de calcul general.

14

MMX - arhitectura software
Tipuri de date

•8 registre de 64-biti
• Registrele pot fi subdivizate in:

• 8 elemente x 8-biti - intregi (packed byte)

• 4 elemente x 16-biti – intregi cu/fara semn (packed word)

• 2 elemente x 32-biti - intregi cu/fara semn (packed double word)

• Registrele MMX sunt partajate cu operatiile flotante (FPU)

15

Registre MMX- Compatibilitate

⚫ Nu s-au adaugat noi excepţii sau stări la procesor
⚫ Registrele MMX reprezintă registre alias ale FPU: - câmpul

exponent, care corespunde bitilor (64-78) ale reg. FPU şi bitul de semn (bit
79) sunt setati la “1”, făcând ca valoarea din registru să fie NaN (Not a
Number) sau infinit, când este văzută ca o valoare flotantă

16

Exemplu de prelucrare

⚫ Pixelii sunt în general întregi pe 8/16-biţi - se pot împacheta câte 8/4
pixeli într-un registru MMX de 64-biţi

⚫ O instrucţiune MMX ia cei 4 pixeli deodată dintr-un registru MMX,
execută operaţia aritmetică sau logică pe toate elementele in paralel
şi scrie rezultatul intr-un registru MMX

17

Cum opereaza setul MMX ? Instructiuni MMX : 57

Tipuri de instrucţiuni:

- transfer date (movq, movd)
- aritmetice (padd, psub, pmul ...)
- comparaţii (pcmpeq, pcmpgt)
- conversii (pack,punpck)
- logice (pand, pandn, por, pxor)
- deplasare (psll, psrl, psra)
- management stare (emms)

• add, subtract, multiply, compare, shift, data conversion, 64-bit data move, 64-bit logical
operation and multiply-add for multiply-accumulate operations.

18

Aritmetica “wrap around” = modulo 2n

⚫ Cu aritmetica modulo 2n:

- La un rezultat care este in afara domeniului (CF=1/ overflow este
ignorat) numai biţii LSB sunt păstraţi din destinaţie (rezultat)

“Roata numerelor” fără semn reprezentate pe 4 biţi “Roata numerelor” cu semn reprezentate pe 4 biţi

19

Packed Add Word cu wrap around (modulo 2)

• Fiecare adunare este independentă
• La cea din dreapta apare depăşire şi trunchiere

0x00 0x00 0x57 0x7F 0xAB 0xAB 0xC8 0xFF

+ + + + + + + +

0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40

= = = = = = = =

0x40 0x40 0x97 0xBF 0xEB 0xEB 0x08 0x3F

Obtinerea efectului wrap around pe culoarea pixelilor (modulo 28);

20

Saturarea aritmetică

⚫ Saturare: dacă rezultatul operatiei este overflow/underflow,
rezultatul este limitat la cea mai mare/mica valoare reprezentabila

⚫ Aceasta este importanta la calculul pixelilor si se evita un “wrap-
around” care ar cauza trecerea unui pixel alb brusc la negru (de ex.)

⚫ Nu exista "saturation mode bit”: ptr. ca un nou bit de mod necesita
modificarea SO

⚫ Se folosesc instructiuni distincte ptr. a obtine rezultat “wrap-around”
sau cu saturatie

21

Gamele de saturare

• Saturarea aritmetica dă un răspuns pentru multe situaţii de depăşire.
• de ex., la calculul culorilor, saturarea determină ca o culoare să
rămână „pură” (negru/alb) fără a permite inversarea

0x00 0x00 0x57 0x7F 0xAB 0xAB 0xC8 0xFF
+ + + + + + + +

0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40
= = = = = = = =

0x40 0x40 0x97 0xBF 0xEB 0XEB 0xFF 0xFF

23

Packed Add Word cu unsigned saturation

24

Imaginea originală pe nivele de gri;

Efectul Wraparound; Efectul de saturaţie

25

Setul de Instructiuni MMX

Modulo 2^n

26

Setul de Instructiuni MMX

27

Setul de Instructiuni MMX

http://tommesani.com/index.php/simd/39-mmx-conversion.html

http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html
http://tommesani.com/index.php/simd/39-mmx-conversion.html

28

char d[]={15, 15, 15, 15, 15, 15, 15, 15};8 bytes

char vect[]={75,76,78,...,97,98}; 24 bytes

_asm{

 movq mm1, d ; mm1=d

 mov cx, 3 ; cx=3

 mov esi, 0 ; esi=0

L1: movq mm0, vect[esi] ; mm0=vect (8 valori)

 paddb mm0, mm1 ; mm0=vect+d

 movq vect[esi], mm0 ; vect=vect+d

 add esi, 8 ; esi=esi+8

 loop L1 ; if cx≠0 go to L1

 emms ; exit MMX

}

Ex: adun o constanta la un vector

29

Multiply-Accumulate

• Operaţiile MAC (* +) sunt fundamentale pentru mulţi algoritmi de
prelucrare a semnalelor ca : produse de vectori, produse de matrici,
filtre FIR, IIR, FFT, DCT etc.

30

⚫ Nu există flaguri noi de condiţie

⚫ Nici unul din flagurile de condiţie nu este afectat de această
instrucţiune

⚫ Rezultatele pot fi folosite ca măşti ptr. selectarea diferitelor
intrări folosind operaţii logice, eliminând salturile.

Packed Compare

33

Conditional Select

OBS. Chroma keying este o tehnică pentru a mixa (fuziona) două imagini sau cadre împreună, în
care o culoare (sau o mica gama de culori) de la o imagine este eliminată (sau făcută
transparent), şi dezvăluie o altă imagine în spatele ei.

• Chroma Keying, de exemplu, demonstrează cum selecţia condiţionată, folosind setul
de instrucţiuni MMX, elimină predicţiile greşite ale salturilor, în plus realizând mai
multe operaţii de selecţie în paralel.

• Text overlay (subtitrarea) pe video ar putea beneficia de această tehnică

If (cond) True
Ra := Rb

else Ra := Rc
Presupunem că Rx=11111...111b, dacă conditia este adevarată
şi Rx=00000...000b, dacă condiţia este falsă.
Ra poate fi calculat cu expresia logică :

Ra = (Rb AND Rx) OR (Rc NAND Rx)

34

Conditional Select – aplicatie Chroma Keying

x y New_image

green

35

Creare Masca
(packed compare for equality)

Presupunem că pixelii alternează green/not_green

PCMPEQW MM0, GREEN

36

Conditional Select

Combine: PANDN, PAND, POR

PANDN
DEST ← (NOT DEST) AND SRC;

37

3939

Conditional Select !!!

• Eliminarea ramificaţiilor (salturi conditionate)

• Fără tehnologia MMX fiecare pixel este procesat separat si necesită
un salt condiţionat

• Folosind setul MMX: (8 pixeli x 8 biti) pot fi procesaţi în paralel si nu
implică folosirea salturilor !!!

40

Aplicatie: diferenta cadrelor

A B

|A-B|

41

A-B B-A

(A-B) or (B-A) |A-B|

42

MOVQ mm1, A //move 8 pixels din imag. A

MOVQ mm2, B //move 8 pixels of imag. B

MOVQ mm3, mm1 // mm3=A

PSUBSB mm1, mm2 // mm1=A-B

PSUBSB mm2, mm3 // mm2=B-A

POR mm1, mm2 // mm1=|A-B|

|A-B|

43

Ex. image fade-in-fade-out

A*α+B*(1-α) = B+α(A-B)

A B

44

α=0.75

45

α=0.5

46

α=0.25

47

α=0

51

Vector Dot Product (suma de produse)

⚫ Vector dot product este unul dintre cei mai utilizaţi algoritmi în
prelucrarea semnalelor (imagini, audio, video şi voce)

⚫ PMADD realizează 4 * si 2 + simultan, iar cuplat cu PADD, 8 operatii
multiply-accumulate pot fi executate: 2 PMADD şi 2 PADD

53

Vector Dot Product - Comparatie

 fara MMX cu MMX

Load 16 4

Multiply 8 2

Shift 8 2

Add 7 1

Miscellaneous -- 3

Store 1 1

Total 40 13

55

MMX

Pro si Contra
 Pro:

•Realizeaza mai multe calcule simultan

• Poate utiliza diferite tipuri de date

 Contra:

• Datorită partajării registrelor nu poate executa in acelaşi
timp operaţii MMX şi în virgulă flotantă

 ; void EndMMX()
 ; global _EndMMX

_EndMMX: emms ; Allow CPU to use floating point
ret

• Necesita compilatoare noi ptr execuţia instructiunilor MMX

• Operează numai cu valori intregi

56

▪ Operatiile MMX sunt limitate la valori intregi
 – extensiile SSE and AVX permit si operatii cu date in virgula mobila
▪ MMX sunt rar folosite in procesoarele moderne – se folosesc in

schimb SSE sau AVX

AVX – Advanced Vector Extensions

57

● SSE – Streaming SIMD Extension s-a introdus la Pentium III, si
este suportat de majoritatea procesoarelor moderne

- Registre de 128 biti - suport ptr. operatii single-precision floating point
- SSE2 – Streaming SIMD Extension 2 s-a introdus la Pentium 4
- Suporta si operatii double-precision floating point
- Alte extensii: SSE3, SSSE3, SSE4.1, SSE4.2 …

● Instructiunile cu vectori au fost introduse treptat si extinse in mai
multe generatii de procesoare

– extensiile SSE impreuna includ peste 400 de instructiuni
● Programarea cu AVX este similara, dar lungimea vectorilor si numele

instructiunilor difera

58

Evolutia continua a setului SSE

62

Registre vector SSE

 ■ SSE introduce un nou set de 8/16 reg. vector de 128-biti , XMM0-XMM15

– 8 reg. XMM in mod non 64-biti
– 16 reg. XMM in mod 64-biti

■ Reg. XMM sunt registre fizice reale nu reg. alias (ca MM0-MM7)
– independente de reg. de uz general sau de reg.FPU/MMX

■ Registrele XMM pot fi accesate in mod 32-bit, 64-bit sau 128-bit
– Numai ptr. operatii pe date, nu pe adrese

■ MXCSR este un reg. de 32 biti de control si stare

•Permite operații pe numere impachetate în virgulă mobilă

simplă precizie

63

Instructiuni SSE

■ Extensia originala SSE adauga 70 de instructiuni noi la setul de instructiuni x86
– 50 ptr. operatii SIMD single-precision floating-point (SPFP)
– 12 ptr. Operatii SIMD cu intregi
– 8 ptr. Control cache
– extensiile urmatoare au adaugat mai multe instructiuni
■ Supporta ambele tipuri de instructiuni packed/ scalar SPFP
– operatii pe valori impachetate de 32-bit floating-point (sufix P)
– operatii pe scalar de 32-bit floating-point (32 LSB), (sufix S)

- Compilatoarele folosesc instr. SSE scalare ptr. operatiile flotante in locul
instructiunilor x87 ale FPU

64

Tipuri de date ptr. SSE/SSE2

65

SSE2
■ Streaming SIMD Extension 2 (Pentium 4)
- extinde SSE și înlocuiește instrucțiunile vectoriale MMX cu intregi

■ Extinde setul SSE cu suport pentru:
- valori în virgulă mobilă cu dublă precizie impachetate
- valori întregi impachetate - adaugă peste 70 de instrucțiuni noi setului
de instrucțiuni

■ Funcționează pe entități de 128 biți din registrele XMM
- datele trebuie aliniate la limitele de 16 biți, atunci când sunt stocate în memorie
- restricțiile privind alinierea au fost ulterior relaxate
- au fost introduse instrucțiuni de load/store nealiniate

66

 AVX – Advanced Vector Extensions

– suportat de procesorul Intel Sandy Bridge(2011) si urmatoarele
– extinde reg. vectoriali la 256 biti, YMM0 – YMM15
- Instrucțiunile SSE funcționează pe jumătatea inferioară a registrelor YMM
■ Introduce noi instrucțiuni cu trei operanzi
- o destinație și doi operanzi sursă: c = a ⊗ b
■ AVX-512 este suportat în microarhitectura Knight Landing
■ Procesorul Intel Xeon Phi acceptă o unitate de procesare vectorială de 512biți
 - nu este compatibil cu SSE sau AVX

67

Tipuri de date ptr. AVX

68

Caracteristici ale AVX

70

Exemple de generare cod

71

⚫ Graphics Processing Unit (GPU): nVidia 7800, 24 pipelines
(8 vector/16 fragment)

Alte arhitecturi SIMD

72

Intel

• MMX:

• Pentium MMX

• Pentium Pro

• Pentium II

• Celeron

• SSE:

• Pentium III

• Pentium IV

• Celeron 2

Procesoare cu caracteristici SIMD

AMD

• 3DNow!

• K6-2

• K6-3

• Advanced 3DNow!

• Athlon

• Duron

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6: Detectie MMX/SSE
	Slide 7
	Slide 8
	Slide 9: Scopul MMX
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: MMX - arhitectura software
	Slide 15: Registre MMX- Compatibilitate
	Slide 16: Exemplu de prelucrare
	Slide 17: Cum opereaza setul MMX ? Instructiuni MMX : 57
	Slide 18: Aritmetica “wrap around” = modulo 2n
	Slide 19: Packed Add Word cu wrap around (modulo 2)
	Slide 20: Saturarea aritmetică
	Slide 21: Gamele de saturare
	Slide 23: Packed Add Word cu unsigned saturation
	Slide 24
	Slide 25: Setul de Instructiuni MMX
	Slide 26: Setul de Instructiuni MMX
	Slide 27: Setul de Instructiuni MMX
	Slide 28
	Slide 29
	Slide 30: Packed Compare
	Slide 33: Conditional Select
	Slide 34: Conditional Select – aplicatie Chroma Keying
	Slide 35
	Slide 36: Conditional Select
	Slide 37
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 51: Vector Dot Product (suma de produse)
	Slide 53: Vector Dot Product - Comparatie
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71
	Slide 72

