
1

Curs 11

 Setul extins de instructiuni x86

“Rabdarea este insotitoarea intelepciunii” Sf. Augustin

2

Instructiuni
de baza

8086/8088

Set extins 286

Set extins 386

Instr. pe 32 biti +noi

Set extins 486 (FPU)

Pentium

Pentium MMX (+57 instr)
 8reg. x 64b

PIII = PII + SSE (70 instr.) – 8 reg x 128b – FP-DP

P4= PIII + SSE2 (144 instr.) + SSE3 (13 instr)-Prescott +SSE4(54) +SSE5 (170)…..

SSE = SIMD Streaming Extension

MMX=Multi Media eXtention

3

Setul de instructiuni extins x86 (32 biti)

Regiştri generali:
EAX — acumulatorul implicit
EBX — conţine implicit o adresă de bază ptr. anumite moduri de adresare
ECX — contor implicit
EDX — acumulator extins implicit sau registru de date
ESI — index pentru sursă
EDI — index pentru destinaţie
EBP — indicatorul bazei în stivă
ESP — indicatorul curent în stivă

Regiştri de stare şi control:
EIP — indicator (numărător) de instrucţiuni
EF — registrul de flaguri
CR0…CR4 — regiştri de control procesor
DR0…DR7 — regiştri pentru depanare (debug)

Regiştri segment:
DS, ES
FS — registru segment suplimentar (de date)
GS — registru segment suplimentar (de date)

4

5

Setul de instructiuni extins x86

⚫ Utilizarea setului extins de instrucţiuni în aplicaţii trebuie
anunţată asamblorului folosind directivele:

⚫ .8086 .8087 .186 .286 .287 ;

⚫ .286P .386 .387 .386P .486;

⚫ .486P .586 .586P .MMX .SSE

vezi Lucrarea 12

6

Setul de instructiuni extins

1. Instrucţiuni de transfer

MOVSX (Move with Sign Extension) –
MOVSX destinaţie, sursă ; destinaţie sign_extend(sursă)

Operanzi: reg,reg
 reg,mem

Exemplu:
MOVSX EAX, AL ;octet → dublucuvânt
MOVSX EDI, WORD PTR [ESI] ;cuvânt → dublucuvânt

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination1 1 1 1 1 1 1 1

7

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination0 0 0 0 0 0 0 0

0

MOVZX (Move with Zero Extension) –

MOVZX destinaţie, sursă ;destinaţie sursă

Operanzi: reg,reg
 reg,mem

Exemplu:
MOVZX EAX, AL ;octet → dublucuvânt

; EAX=00 00 00|AL

8

PUSHFD (Push EFLAGS Registers)
PUSHFD ESP  ESP – 4

 [SS:ESP]  EF

POPFD (Pop Stack into EFLAGS)
POPFD EF  [SS:ESP]

 ESP  ESP + 4

PUSHF (Push 16-bit EFLAGS Registers)
PUSHF ESP  ESP – 2
 [SS:ESP]  EFlow

POPF (Pop Stack into FLAGS) – aduce din stivă cei mai puţin
semnificativi 16 biţi ai registrului EF. Instrucţiunea nu are operanzi,
iar flagurile se schimbă în mod corespunzător.

POPFD EFlow  [SS:ESP]
 ESP  ESP + 2

9

PUSHAD (Push 32-bit General Registers) –
;temp  ESP
;PUSH EAX PUSH ECX PUSH EDX PUSH EBX
;PUSH temp PUSH EBP PUSH ESI PUSH EDI

POPAD (Pop All General Registers) –

SAHF (Store AH în EFLAGS) – încarcă conţinutul registrului AH în LSO al
registrului EFlags, cu mascarea biţilor rezervaţi (7,6,4,2 şi 0)
;EF EF or (AH and 0D5H)

10

Lseg (Load Segment Register)

LDS reg, mem ;destinaţie  [sursă]

LES reg, mem ;seg  [sursă+4]

LFS reg, mem

LGS reg, mem

LSS reg, mem

BSWAP (Byte Swap) – Se realizează conversia între formatele
“big-endian” şi “little-endian” schimbând ordinea celor 4 octeţi care
compun data conţinută de registrul precizat.

BSWAP reg32 ;temp  reg

reg[0…7]  temp[24…31]

 reg[8…15]  temp[16…24]

 reg[16…23]  temp[8…15]

 reg[24…31]  temp[0…7]

Ex. 12345678h >> 78563412h

11

INSB, INSW, INSD (Input String from I/O Port)

– destinaţia dată de (ES:EDI) primeşte date de la portul de intrare, cu
adresa specificata de către DX.

 INSB, INSW, INSD (ES:EDI)  port(DX)

 (EDI) = (EDI)+(d) ;d=1 / 2 / 4

OUTSB, OUTSW, OUTSD (Output String to I/O Port)

– OUTSB, OUTSW, OUTSD port(DX)  (ES:ESI)

 (ESI) = (ESI)+(d);d=1 / 2 / 4

12

CMPXCHG (Compare and Exchange) –
CMPXCHG operand1, operand2
 ;ACC = operand1 ?? , dacă sunt egale atunci
 ;ZF=1 şi operand1:= operand2
 ;altfel ZF=0 ACC = operand2
 Operanzi: reg,reg

 mem,reg

XADD (Exchange and ADD)
XADD destinaţie, sursă ; dest. originală >> temp
 ; destinaţie = destinaţie + sursă şi

; dest. originală=temp >> sursă
 Operanzi: reg,reg

 mem,reg

2. Instructiuni aritmetice

13

IMUL (Integer (Signed) Multiplication) –
IMUL op1
IMUL op1,op2
IMUL op1,op2,op3

Operanzi: op1 op2 op3
Reg acc  acc * reg
Mem acc  acc * mem
Reg, reg op1  op1*op2
Reg, mem op1  op1*op2
Reg, imed op1  op1*op2
Reg, reg, imed op1  op2*op3
Reg, mem, imed op1  op2*op3

14

BSF (Bit Scan Forward) –
BSF destinaţie, sursă; dacă (sursa = 0) atunci ZF = 1 şi destinaţia???

altfel ZF 0, temp  0
 while (bit(sursa, temp) =0)
 temp  temp+1
 destinaţie  temp

 Operanzi: reg,reg
 reg,mem
Exemplu:
MOV AX, 85C0H ; AX = 1000 0101 1100 0000 b
BSF BX, AX ;(BX)  6

BSR (Bit Scan Reverse) –
BSR destinaţie, sursă ; dacă destinaţia este (AX, BX,CX, DX, SI,DI, BP, SP)

 atunci startbit  15; altfel startbit  31
 dacă (sursa = 0) atunci ZF = 1 şi destinaţia  ???

altfel ZF 0
 temp  startbit
 while (bit (sursa, temp) = 0)
 temp  temp-1
 destinaţie  temp

 Operanzi: reg,reg
 reg,mem

15

Exemplu:
MOV EAX, 34A00000H ; EAX=001101001010000....0h
BSR BX, EAX ;BX  29, BX  [log2 (EAX)],
 partea întreagă a valorii log2(AX)

BT (Bit Test) –
BT destinaţie, index ; CF  destinaţie [index]

Operanzi: reg, data
mem, data

 reg, reg
 mem, reg
Exemplu:
MOV EAX, 18 ;poziţia bitului care va fi testat
MOV EBX, 0F749Eh ;data pentru test
BT EBX, EAX ;CF 1 (1111 0111 0100 1001 1110)
JC eticheta ;salt conform bitului de test

16

BTC (Bit Test and Complement) –
BTC destinaţie, index CF  destinaţie [index]

destinaţie [index]  not destinaţie [index]
 Operanzi: reg, data
 mem, data
 reg,reg
 mem,reg

BTR (Bit Test and Reset)
BTR destinaţie, index CF  destinaţie [index]

destinaţie [index]  0
Operanzi: reg, data

 mem, data
 reg,reg
 mem,reg

BTS (Bit Test and Set)
BTR destinaţie, index CF  destinaţie [index]

destinaţie [index]  1
Operanzi: reg, data

 mem,data
 reg,reg
 mem,reg

17

SETcc dst (Set Byte on Condition) –

Condiţia ‚cc’ poate fi: A/ AE/ B/ BE/ C/ E/ G/ GE/ L/ LE/ NA/ NAE/ NB/ NBE/ NC/ NE/
NG/ NGE/ NL/ NLE/ NO/ NP/ NS/ NZ/ O/ P/ PE/ PO/ S/ Z

Exemplu:
SETC dest ;Set if Carry/ CF=1=> dest=1
SETLE dest ;Set if less or equal/ S ≠ O&Z=1 => dest=1

Exemplu:
XOR EBX,EBX ; EBX=0
ADD ECX,[val] ; ECX=ECX+val
CMOVC ECX,EBX ; If C=1, ECX=EBX =0 else ECX=[val]

CMOVcc dest,src (CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG,
CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE, CMOVNB, MOVNBE,
CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE,
CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO, CMOVP, CMOVPE,
CMOVPO, CMOVS, CMOVZ)

18

SHLD (Shift Left Double)
SHLD destinaţie, sursă, count
temp  max (count, 31)
value  sursă >>destinaţie
value  value * 2temp

dest  value

Operanzi:
 reg, reg, imed

mem, reg, imed
reg, reg, CL
mem, reg, CL

.data

wval WORD 9BA6h

.code

mov ax,0AC36h

shld wval,ax,4

9BA6 AC36

BA6A AC36

wval AX

inainte:

dupa:

19

SHRD (Shift Right Double) –
SHRD destinaţie, sursă, count
temp  max (count, 31)
value  sursă >>destinaţie
value  valoare div 2temp

 dest  valoare

Operanzi:
 reg, reg, imed

mem, reg, imed
reg, reg, CL
mem, reg, CL

mov ax,234Bh

mov dx,7654h

shrd ax,dx,4

7654 234B

7654 4234

DX AX

inainte:

dupa:

20

3. Instructiuni speciale

CPUID (CPU IDentification) – returnează informaţii de identificare a procesorului

INVD (Invalidate Cache) – invalidează memoria cache internă a procesorului;

MOV (Move Special) – copiază sau încarcă un registru special al CPU în /dintr-un
registru general. Regiştrii speciali sunt CR0, CR2, CR3 (Control Register), respectiv
DR0, DR1, DR2, DR3, DR6, DR7 (Debug Register).
MOV destinaţie, sursă; (destinaţie) sursă
Operanzi: reg,reg
Exemplu:

MOV EAX, CR0 ;se salvează CR0 în EAX
MOV DR7, ECX ;se încarcă DR7 cu conţinutul ECX

RDMSR (Read from Model Specific Register) – conţinutul unui registru MSR, precizat
de ECX, este copiat în EDXEAX. Cu ajutorul MSR pot fi observate şi controlate
detaliile specifice procesorului (configuration of OS-relevant things) – instr.
privilegiate executate de OS.

RDMSR ; EDXEAX MSR[ECX]

WRMSR (Write to Model Specific Register) – un operand din EDXEAX este copiat
într-un registru MSR

 + INSTRUCTIUNI MMX, SSE

21

// Exemplu. MMX_CPUID_TEST.cpp : Defines the entry point for the //console application

#include “stdafx.h”

int _tmain(int argc, _TCHAR* argv[])
 {
 bool supMMX = true;
 asm {
 mov supMMX, 1
 mov EAX, 1
 cpuid
 test EDX, 0x800000 ;MMXsup =bit 23 ?
 jnz sup
 mov supMMX, 0
 sup:
 };
 if (supMMX) printf("MMX is supported!\n");
 else
 printf("MMX not supported!\n");
 getchar();
 return 0;
 };

	Slide 1: Curs 11 Setul extins de instructiuni x86
	Slide 2
	Slide 3: Setul de instructiuni extins x86 (32 biti)
	Slide 4
	Slide 5: Setul de instructiuni extins x86
	Slide 6: Setul de instructiuni extins
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: 3. Instructiuni speciale
	Slide 21

