“Rabdarea este insotitoarea intelepciunii” Sf. Augustin

Curs 11
Setul extins de instructiuni x86

Plll = Pll + SSE (70 instr.) — 8 reg x 128b - FP-DP
P4= Plll + SSE2 (144 instr.) + SSE3 (13 instr)-Prescott +SSE4(54) +SSE5 (170).....

Pentium MMX (+57 instr)
8reg. x 64b

Set extins 486 (FPU)

Set extins 386
Instr. pe 32 biti +noi

Set extins 286

IMD treaming xtension

ulti ediae tention

Setul de instructiuni extins x86 (32 biti)

Registri generali:
EAX — acumulatorul implicit
EBX — contine implicit o adresa de baza ptr. anumite moduri de adresare
ECX — contor implicit
EDX — acumulator extins implicit sau registru de date

ESI — index pentru sursa
EDI — index pentru destinatie
EBP — indicatorul bazei in stiva
ESP — indicatorul curent in stiva
Registri de stare si control:
EIP — indicator (numarator) de instructiuni

EF — registrul de flaguri

CRO...CR4 — registri de control procesor

DRO...DR7 — registri pentru depanare (debug)
Registri segment:

DS, ES

FS — registru segment suplimentar (de date)

GS — registru segment suplimentar (de date)

General purpose

1A32 naming
RO

EAX

ECX

EDX

EBX

31

31

31

31

Code Segment

Data
Segments

¢ In

Stack Segment

-

S8

NS

DS

ES

Fs

(ERN

15

15

15

15

15

15

01d X86 General purpose

naming

Data
Registers

Old X86

IA32 naming 31 15 naming
R4 ESP L qP -
a1 15 0 Pointer
R5 EBP L RP Registers
i1 15 0
R6 ESI L ST -~
a1 15 0 > Index
R7 EDI L DI Registers
EIP 31 15 IP 0 Tnstruction
L Pointer
31 15
EFLAGS L FLAGS gjiat!ls:
egister
2
0
0
6 Segment
0 [registers
0
2 New Data
0 Segment
I egisters
/ 4

Setul de instructiuni extins x86

® Utilizarea setului extins de instructiuni in aplicatii trebuie
anuntata asamblorului folosind directivele:

® .3086 .8087 .186 .286 .287 ;
® .286P .386 .387 .386P .486;
® .486P .586 .586P .MMX .SSE

vezi Lucrarea 12
5

Setul de instructiuni extins

1. Instructiuni de transfer

MOVSX (Move with Sign Extension) —

MOVSX destinatie, sursa ; destinatie € sign_extend(sursd)
Operanzi: reg,reg
reg,mem
Exemplu:
MOVSX EAX, AL :octet = dublucuvant

MOVSX EDI, WORD PTR [ESI] ;cuvant = dublucuvant

10001111 Source

11111111 10001111 Destination

MOVZX (Move with Zero Extension) —

MOVZX destinatie, sursd ;destinatie € sursd

Operanzi: reg,reg
reg,mem
Exemplu:
MOVZX EAX, AL :octet = dublucuvant
; EAX=00 00 00| AL
0 10001111 Source

00000000 10001111 Destination

PUSHFD (Push EFLAGS Registers)
PUSHFD ESP < ESP -4
[SS:ESP] €< EF

POPFD (Pop Stack into EFLAGS)
POPFD EF < [SS:ESP]
ESP € ESP + 4

PUSHF (Push 16-bit EFLAGS Registers)
PUSHF ESP < ESP-2
[SS:ESP] € EFlow

POPF (Pop Stack into FLAGS) — aduce din stiva cei mai putin
semnificativi 16 biti ai registrului EF. Instructiunea nu are operanzi,
iar flagurile se schimba in mod corespunzator.

POPFD EFlow € [SS:ESP]
ESP € ESP +2 8

PUSHAD (Push 32-bit General Registers) —
itemp € ESP
;PUSH EAX PUSH ECX PUSH EDX PUSH EBX
;PUSH temp PUSH EBP PUSH ESI PUSH EDI

POPAD (Pop All General Registers) —

SAHF (Store AH in EFLAGS) — incarca continutul registrului AH in LSO al
registrului EFlags, cu mascarea bitilor rezervati (7,6,4,2 si 0)
;EF < EF or (AH and OD5H)

Control Flags Status Flags

Carry
—— Parity
Aux. Carry
Zero
Sign
Overflow
Int. En.
Direction
Trap

Lseg (Load Segment Register)

LDS reg, mem ;destinatie € [sursd]
LES reg, mem ;seg € [sursd+4]

LFS reg, mem

LGS reg, mem

LSS reg, mem

BSWAP (Byte Swap) — Se realizeaza conversia intre formatele
“big-endian” si “little-endian” schimband ordinea celor 4 octeti care
compun data continuta de registrul precizat.

BSWAP reg32 ;temp € reg
reg[0...7] € temp[24...31]
reg[8...15] € temp[16...24]
reg[16...23] € templ8...15]
reg[24...31] € temp]0...7]
Ex. 1234 h >> 3412h

10

INSB, INSW, INSD (Input String from 1/O Port)

— destinatia data de (ES:EDI) primeste date de la portul de intrare, cu
adresa specificata de catre DX.

INSB, INSW, INSD (ES:EDI) € port(DX)
(EDI) = (EDI)+(d) ;d=1/2/ 4

OUTSB, OUTSW, OUTSD (Output String to 1/0O Port)

— OUTSB, OUTSW, OUTSD port(DX) € (ES:ESI)
(ESI) = (ESI)+(d);d=1/2 /4

11

2. Instructiuni aritmetice

CMPXCHG (Compare and Exchange) —

CMPXCHG operandl, operand?2
JACC = operandl1 ??, daca sunt egale atunci
,ZF=1 sioperandl:= operand?2
;altfel ZF=0 ACC = operand?2

Operanzi: reg,reg
mem,reg
XADD (Exchange and ADD)
XADD destinatie, sursa , dest. originald >> temp

; destinatie = destinatie + sursa Si
; dest. originala=temp >> sursa

Operanzi: reg,reg
mem,reg

12

IMUL (Integer (Signed) Multiplication) —

IMUL
IMUL
IMUL

Operanzi:

opl
Reg
Mem
Reg,
Reg,
Reg,
Reg,
Reg,

opl
opl,op2
opl,op2,0p3

op2 op3

reg
mem
imed
reg, imed
mem, imed

acc € acc *reg
acc € acc *mem
opl € opl*op2
opl € opl*op2
opl € opl*op2
opl € op2*op3
opl € op2*op3

13

BSF (Bit Scan Forward) -
BSF destinatie, sursa; daca (sursa =0) atunci ZF =1 si destinatia €???
altfel ZF €< 0, temp € 0
while (bit(sursa, temp) =0)
temp € temp+1
destinatie € temp

Operanzi: reg,req

reg,mem
Exemplu:

MOV AX, 85COH ; AX =1000 0101 1100 0000 b
BSF BX, AX :(BX) € 6

BSR (Bit Scan Reverse) —
BSR destinatie, sursa ,; dacd destinatia este (AX, BX,CX, DX, SI,DI, BP, SP)
atunci startbit €< 15; altfel startbit €< 31
daca (sursa = 0) atunci ZF = 1 si destinatia € ???
altfel ZF € 0
temp € startbit
while (bit (sursa, temp) = 0)
temp € temp-1
destinatie € temp

Operanzi: reg,reg
reg,mem

14

Exemplu:

MOV EAX, 34A00000H ; EAX=001101001010000....0h

BSR BX, EAX ;BX € 29, BX € [log, (EAX)],
partea intreaga a valorii log,(AX)

BT (Bit Test) —
BT destinatie, index ; CF € destinatie [index]
Operanzi: reg, data
mem, data
reg, reg
mem, reg
Exemplu:
MOV EAX, 18 ;pozitia bitului care va fi testat
MOV EBX, OF749Eh ;data pentru test
BT EBX, EAX ;CF<1 (11110111010010011110)
IC eticheta :salt conform bitului de test

15

BTC (Bit Test and Complement) —

BTC destinatie, index CF € destinatie [index]
destinatie [index] € not destinatie [index]
Operanzi: reg, data
mem, data
reg,reg
mem,reg

BTR (Bit Test and Reset)
BTR destinatie, index CF € destinatie [index]
destinatie [index] € 0
Operanzi: reg, data
mem, data
reg,reg
mem,reg

BTS (Bit Test and Set)
BTR destinatie, index CF € destinatie [index]
destinatie [index] € 1
Operanazi: reg, data
mem,data
reg,reg
mem,reg

16

SETcc dst (Set Byte on Condition) —

Conditia,cc’ poate fi: A/ AE/ B/ BE/ C/E/ G/ GE/ L/ LE/ NA/ NAE/ NB/ NBE/ NC/ NE/
NG/ NGE/ NL/ NLE/ NO/ NP/ NS/ Nz/ O/ P/ PE/ PO/ S/ Z

Exemplu:
SETC dest ;Set if Carry/ CF=1=> dest=1
SETLE dest ;Set if less or equal/ S # 0&Z=1 => dest=1

CMOVcc dest,src (CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG,
CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE, CMOVNB, MOVNBE,
CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE,
CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO, CMOVPE, CMOVPE,
CMOVPO, CMOVS, CMOVZ)

Exemplu:
XOR EBX,EBX : EBX=0
ADD ECX,[val] : ECX=ECX+val

CMOVC ECX,EBX ; If C=1, ECX=EBX =0 else ECX=[val]
17

SHLD (Shift Left Double)

SHLD destinatie, sursa, count
temp € max (count, 31)

value € sursa >>destinatie

value € value * 2temp

dest € value

Operanzi:
reg, reg, imed
mem, reg, imed
reg, reg, CL
mem, reg, CL

.data

wval WORD 9BA6h
.code

mov ax,0AC36h
shld wval,ax,4

inainte:

dupa:

<_

wval AX
—O9RAG6 AC36
RBRAOGA AC30

SHRD (Shift Right Double) —
SHRD destinatie, sursa, count
temp € max (count, 31)
value € sursa >>destinatie
value € valoare div 2temp
dest € valoare

Operanzi:
reg, reg, imed
mem, reg, imed
reg, reg, CL
mem, reg, CL

mov ax,234Bh o
mov dx,7654h Inainte:
shrd ax,dx,4 dupa:

DX AX
7654 234B —
7654 4234

19

3. Instructiuni speciale
CPUID (CPU IDentification) — returneaza informatii de identificare a procesorului

INVD (Invalidate Cache) — invalideaza memoria cache interna a procesorului;

MOV (Move Special) — copiaza sau incarca un registru special al CPU in /dintr-un
registru general. Registrii speciali sunt CRO, CR2, CR3 (Control Register), respectiv
DRO, DR1, DR2, DR3, DR6, DR7 (Debug Register).

MOV destinatie, sursa; (destinatie) € sursd
Operanazi: reg,reg
Exemplu:
MOV EAX, CRO :se salveaza CRO in EAX
MOV DR7, ECX ;se Tncarca DR7 cu continutul ECX

RDMSR (Read from Model Specific Register) — continutul unui registru MSR, precizat
de ECX, este copiat in EDX | EAX. Cu ajutorul MSR pot fi observate si controlate
detaliile specifice procesorului (configuration of OS-relevant things) — instr.
privilegiate executate de OS.

RDMSR ; EDX /EAX € MSR[ECX]

WRMSR (Write to Model Specific Register) — un operand din EDX | EAX este coplat
intr-un registru MSR

+ INSTRUCTIUNI MMX, SSE

// MMX_CPUID_TEST.cpp : Defines the entry point for the //console application

H#include “stdafx.h”

int _tmain(int argc, _TCHAR* argv[])
{
bool supMMX = true;

asm {
mov supMMX, 1

mov EAX, 1
cpuid
test EDX, 0x800000 ;MMXsup =bit 23 ?
jnz sup
mov supMMX, 0
sup:
I
if (supMMX) printf("MMX is supported!\n");
else
printf("MMX not supported!\n");

getchar();
return O;

21

	Slide 1: Curs 11 Setul extins de instructiuni x86
	Slide 2
	Slide 3: Setul de instructiuni extins x86 (32 biti)
	Slide 4
	Slide 5: Setul de instructiuni extins x86
	Slide 6: Setul de instructiuni extins
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: 3. Instructiuni speciale
	Slide 21

