“Simplitatea este complexitatea inteleasa”.
C. Brancusi

Curs 10

Servicii sistem
Interfata aplicatiilor ASM cu SO

Cuprins

v Servicii sistem - INT21h
v Interfata aplicatiilor ASM cu SO. Aplicatii .com si .exe
v" UEFI

1. Servicii sistem

Aplicatie utilizator

INT21hu INT
DOS 10h
b v 16h... | | INJOUT
BIOS \/
Hardware

Ex. Sa se preia de la tastatura un sir de caractere si sa se afiseze pana la tastarea ‘ESC’.

Servicii DOS - INT 21h

INT 20H Terminate a program

INT 21H DOS Services

INT 22H Terminate address

INT 23H Control-Break address

INT 24H Critical Error Handler address

INT 25H/26H Absolute Disk Read/Write

INT 27H Terminate but Stay Resident

INT 28H DOS Idle (safe to pop up)

INT 29H DOS Internal Fast Screen Write

INT 2eH Perform DOS Command

INT 2fH Multiplex (DoubleSpace, spooler, TSR control, other APIs)
INT 31H DPMI DOS Protected Mode Interface Services
INT 33H Mouse Support

INT 67H EMS Expanded Memory Manager (HIMEM.SYS)

Servicii DOS - INT 21h

® INT 20h — Terminare program se foloseste ptr. a parasi aplicatia si a
returna controlul procesului parinte (ex. COMMAND.COM)

OBS. CS=PSP; JMP/RET => PSP:0

e INT 21h - peste 100 de functii
- terminare, iesire program
- citire KBD, display char, sir..
- open/close/read/write/delete file
- MD/RD/CD (directoare)
- set/get vector (TVI)

Functii DOS
Grup de Servicii
Interuperi DOS

OOH Terminate
01H Kybd Input
02H Display Char
O5H Prn Output
06H Console I/O
07H NoEcho Rawlnp
08H NoEcho Inp
O9H Display Text
OaH Bufrd Input
ObH Get InpStatus
OcH Clear & Input
OdH Reset Disk
OeH Set Dflt Disk
19H Get Dflt Disk
laH Set DTA

Servicii DOS - INT 21h

25H Set INT Vector
2aH Get Sys Date
2bH Set Sys Date
2cH Get Sys Time
2dH Set Sys Time
2eH Set Verify

2fH Get DTA

30H Get Version
31H TSR

32H Get DPB
3300H Get BreakLvl
3301H Set BreakLvl
3305H Get Boot Drv
34H Get InDOS

35H Get INT Vector
36H Disk Size/Free
39H MkDir

3aH RmDir

3bH ChDir

3cH Create File
3dH Open File
3eH Close File
3fH Read File

40H Write File
41H Delete File
42H Move File Ptr
43H File Attrib
44H I0CTL

45H Dup Handle
46H Redir Handle
47H Get Dflt Dir
48H Mem Alloc
49H Mem Free
4aH Mem Resize
4bH Exec

4cH Terminate
4dH Get Exit Code
6¢cH Open/Create File

4eH Find File/GetlInfo
4fH Find Next File

50H Set Cur PSP

51H Get Cur PSP

52H List Of Lists

54H Get Verify

56H Rename/Move File
57H Time/Date File
58H MemAlloc Strategy
59H Get Err Info

5aH Create Unigq File
5bH Create New File
5cH Lock File

5eH Network Misc

5fH Network Redirect
65H National Lang Fns
67H Set Handle Cnt
68H Commit File Data

AH=0
AH=4Ch

AH=4Dh

AH=1h
AH=2h
AH=9 h
AH=25h
AH=35h

Servicii DOS - INT 21h

- terminare program CS=PSP

- terminare program cu cod de sfarsit (elib.mem.)

AH=

01h

02h

03h

04h

terminate type

normal termination (INT 20h, INT 21h Fct. 00h, or INT 21 Fct. 4Ch)

Ctrl-C or Ctrl-Break abort

termination by critical error handler

terminate and stay resident (INT 21h Function or INT 27h)

- preluare cod terminare

- citire caracter de la tastatura in AL

- display caracter din DL, la perifericul standard de iesire

- display sir de caractereS , DX=offset sir

- seteaza noua adresa a rutinei de intr. in TVI (AL=tip vector)

- salveaza adresa rutinei din TVI (ES:DX)

7

INT 21h

e functia O1h : input caracter cu ecou

AH=01h
- Asteapta pana cand este citit un caracter de la tastatura, apoi trimite
ecoul pe display; caracterul citit va fi in AL

MOV AH,1
INT 21H : AL= cod ASCII al caracterul tastat

e functia 02h : afisare caracter pe monitor
AH=02h, DL=caracter de afisat

MOV AH, 02 ;
MOV DL, ‘k’;
INT 21H

INT 21h

String DB ‘Hello world’, 13, 10
LEA DI, STRING

MOV AH, 02h
MOV CX,13

LP1: MOV DL, [DI]
INT 21lh
INC DI

LOOP LP1

INT 21h

® Functia 09h ; IESIRE TEXT LA DISPLAY
:Afisez pe ecran sir de caractereS, cu offset in DX

MOV AH,9 ; fct afisare sir caractere
MOV DX, OFFSET MESAJ; ; DX contine adresa primului caracter
INT 21H s din sir

.data
MESAJ DB “ ACESTA ESTE UN TEXT S”

10

INT 21h

e Functia OAh : INPUT STRING FROM KEYBOARD
:set AH=0Ah, DX=offset- adresa la care memorez caracterele
- | byte specifica dimensiunea buffer-ului
- Il byte specifica nr. caracterelor introduse (contor curent)
- de la al lll-lea byte => datele introduse

ORG 100h
DATA1 DB 6,?,6DUP(FFh) ;0100h=06, ??,0102h-07h = OFFh
START: MOV AH,0Ah ; fct de citire sir cu INT 21h

MOV DX,OFFSET DATA1 ; DX=adresa buffer

INT 21h

11

® Functia 35h k
AH=35h
AlL=tip INTR.

® Functia 25h k
AH=25h
AlL=tip INTR.
DS=Noua Adr. Segm.

INT 21h

GET VECTOR INTR.
ES= Adr. Segm. din TVI
BX=Adr. Offset din TVI

SET VECTOR INTR.
DS==>>0: 4*tip+2 inTVI
DX= =>> 0:4*tip in TVI

DX=Noua Adr. Offset

INT 21h

® Functia 3Ch ; Crearea un nou fisier
In: AH=3Ch; DS:DX = Adr.Identif. Fisier; CX=atribut

Out: AX=error, if C=1// else AX = file handle (if C=0)
® Fie identificatorul de fisier: A:\PROGS\PROG1.ASM
® Erori posibile:

Calea nu exista

toate file handles sunt in uz

acces interzis --- director plin sau fisier read-only

EX: Scrieti secventa de instructiuni ptr. a crea un nou fisier read-only numit "FILE1.txt"
FNAME DB ‘C:\filel.txt', 0

HANDLE DW?

.CODE

MOV AX,@DATA

MOV DS, AX ; initializez DS

MOV AH, 3CH ; open file

LEA DX, FNAME ; copiez adresa FNAME in DX
MOV CL, 1 ; atribut read-only

INT 21H ; open the file

MOV HANDLE, AX ; handle or err code

JCOPEN_ERROR ;jumpiferror

13

® Functia 3Dh ; deschidere fisier

In: AH=3Dh, DS:DX = Adr.ldentif. Fisier; CX=atribut
AL=mod deschidere (0-read/1-write/2-R/W)

Out: AX=error, if C=1//else AX=file handle if C=0

® Functia 3Eh - "CLOSE" - CLOSE FILE
In: BX = file handle

Out: CF =0, if successful, AX destroyed
CF=1 if error, AX = error code (06h)

® Functia 3Fh - "READ" - READ FROM FILE OR DEVICE
In: BX = file handle
CX = number of bytes to read
DS:DX -> buffer for data
Return: CF=0 if successful - AX = number of bytes actualy read (0 if an EOF before call)
CF =1 error AX = error code (05h,06h)

® Functia 40h - "WRITE" - WRITE TO FILE OR DEVICE
In: BX = file handle
CX = number of bytes to write
DS:DX -> data to write
Out: CF=0 if successful -AX = number of bytes actualy written
CF=1if error - AX = error code (05h,06h)

File handle= un nr. pe care SO il asigneaza temporar unui fisier cand este deschis.
SO foloseste file handle intern cand acceseaza fisierul.

EX.1. Scrieti un program care curata ecranul, pozitioneaza cursorul in centrul ecranului
si afiseaza un mesaj din segmentul de date

TITLE PROG 1 program display
.MODEL SMALL
STACK 64
.DATA

MESAJ DB ‘Rutina Test display’, ‘S’
.CODE

MAIN PROC FAR
MOV AX, @DATA
MOV DS, AX ;initializez DS

CALL CLEAR ;clear screen

CALL CURSOR ;set pozitie cursor
CALL DISPLAY ;display mesaj
MOV AH, 4CH

INT 21H

MAIN ENDP

15

;subrutina de stergere ecran

CLEAR PROC
MOV AX, 0600H ;functia scroll up screen
MOV BH, 7 ; atribut normal (A/N)
MOV CX, 0 ;scroll rind = 00, col = 00 (coltul stanga sus)
MOV DX, 184FH ;rind = 18H(24), col = 4FH(79)
INT 10H ;apel intr. ptr. clear screen
RET

CLEAR ENDP

16

;subrutina setare pozitie cursor la centru ecran
CURSOR PROC

MOV AH, 2 ;set cursor
MOV BH, O ;pag 00
MOV DH, 13 ;rand centru
MOV DL, 39 ;col centru
INT 10H ; BIOS

RET

CURSOR ENDP

; display sir pe ecran
DISPLAY PROC

MOV AH, 9 ;fct. display sir

MOV DX, OFFSET MESAJ ;DX pointeaza output buffer
INT 21H ;

RET

DISPLAY ENDP
END MAIN

17

EX2. Genereaza sunet (bell) continuu pana se tasteaza ‘Q’ sau ‘q’

.MODEL SMALL
STACK 64
.DATA
MESAJ DB ‘Pentru a opri sunetul BELL apasati tasta Q(/q) &’
.CODE
MAIN PROC
MOV AX, @DATA
MOV DS, AX

MOV AH, 9
MOV DX, OFFSET MESSAGE ;display mesaj
INT 21H

AGAIN: MOV AH, 2 ; afisare caracter (DOS)
MOV DL, 7 ;generez sunet bell
INT 21H
MOV AH, 1 ;verific tastare (BIOS)
INT 16H
JZ AGAIN ; daca nu tastez, generez bell

18

MOV AH, O ;citesc caracter

INT 16H

CMP AL, ‘Q’ :AL=‘Q’?

JE EXIT ;daca DA, exit

CMP AL, ‘9 ;AL=g’?

JE EXIT ;daca DA, exit

JMP AGAIN ;daca nu, generez sunet bell

EXIT: MOV AH, 4CH
INT 21H
MAIN ENDP
END

e EX3. Sa se scrie un program in LA care sa creeze un fisier text file.txt
in care sa scrie un sir de caractere definit in segmental de date

19

Redirectarea unei intreruperi — Exemplu

mod de realizare:

- se inlocuieste in TVI adresa rutinei vechi cu adresa noii rutine;
- la terminarea aplicatiei se reface vechea adresa in TVI
- houa rutina va contine noul “driver” al resursei (intreruperii)

20

. DATA
OLDVECT DW 2DUP(?) ; aici salvez vechia adr. a rutinei de intrerupere

sinitializare...........

MOV AH, 35h ; 35h-functie sistem pentru citirea
;vectorului de intrerupere

MOV AL, x ; X — tipul intreruperii redirectate

INT 21h ;apelul functiei sistem; functia returneaza

;in ES:BX adresa rutinei de tip x
MOV OLDVECT, BX ; salvare adresa offset (IP)
MOV BX, ES
MOV OLDVECT+2, BX ;salvare adresa segment (CS)
MOV AX, SEG RTI
MOV DS, AX ;DS <- adresa segment a noii rutine de
; tratare a intreruperii (CS nou)
MOV DX, offset RTI ; DX <- adresa offset a noii rutine de intrerupere (IP nou)

MOV AH, 25h ; 25h - functia de scriere vector in TVI;

; in DS:DX se pune adresa rutinei de intrerupere
MOV ALx ;X —tip intrerupere
INT 21h ;apelul functiei sistem

21

; sfirsit program

MOV AX, OLDVECT+2
MOV DS, AX

MOV DX, OLDVECT
MOV AH, 25h

MOV ALx

INT 21h

: refacerea adresei vechi

; functia de scriere vector
; N —nivel intrerupere
; Inscrierea vechiului vector in
;tabela de intreruperi

22

; rutina de tratare a intreruperii

RTI PROC FAR ; nouarutina de tratare a intreruperii

PUSH r ; salvarea registrelor utilizate in cadrul
.......... ; rutinei (r = AX, BX,)
STI ; validare intrerupere, IF=1

; sfirsitul rutinei
POP r ; refacere registre salvate

IRET
RTI ENDP

23

Recomandari de scriere a rutinelor

® parametrii de apel se transmit prin:
registrii procesorului
prin stiva (daca aplicatia se combina cu module scrise in HLL);
Reg. BP se foloseste pt. adresarea parametrilor de pe stiva
® se precizeaza modul de transmitere a parametrilor prin comentarii, ex.
:nume functie
; descriere tip operatie efectuata
> Intrari: ...
s lesiri: ...
; registre afectate

24

Recomandari de scriere a rutinelor (cont.)

e continutul registrelor nu trebuie afectat de executia rutinei;

registrele folosite in procedura se vor salva pe stiva si se vor reface la
sfarsitul rutinei

exceptie: registrele care contin parametrii de iesire
® majoritatea functiilor sistem nu sunt reentrante
nu pot fi apelate din nou inainte de terminare

25

e Temal: Citeste numele de la tastatura si afiseaza lungimea lui:

TITLE PROG_NUME

;Citeste nume si afisez lungimea
.MODEL SMALL
.STACK 64
.DATA
MSG1 DB ‘Cum va numiti?s’
BUFFER1 DB 9, ?, 9 DUP(0)
MSG2 DB CR, LF, ‘Numarul de litere al numelui este: $’
RIND EQU 08
COL EQU 05
CR EQU ODH ;
LF EQU OAH ;

26

e Tema2: Analizati aplicatia de mai jos si stabiliti care este efectul ei.

.model small
.stack 256
.code
mov ax,@data
mov ds,ax
mov ax,0B800h
mov es,ax
mov ah,3
mov cx,19
mov si,offset Text
xor di,di
wr_Char: lodsb
mov es:[di],al
inc di
mov es:[di],ah
inc di
loop wr_Char
mov ax,4C00h

Text DB “Acesta este un text”

2. Interfatarea aplicatiilor ASM cu SO

> Componentele SO DOS:
1. ROM BIOS (POST, bootstrap, 1/0)

2. DOS BIOS (IBM.IO/10.SYS, drivere CON, PRN, AUX, CLK, FD,HDD)
- acces la drivere, implica apel rutine ROM BIOS

3. DOS kernel (MSDOS.SYS/IBMDOS.COM) - functii de acces la
fisiere (1/0 la nivel caracter, independent de hard, INT 21h)

4. Interpretorul de comenzi (shell - COMMAND.COM)

- partea rezidenta (handlere=rutine tratare diferite actiuni)

- partea tranzitorie (C:\>, citeste cda, com. interne, la terminare control =>
partea rezidenta

- rutina de initializare

COMENZI: Interne, Externe, Indirecte (.bat)

28

Software Component

Procesul de Bootare

Description

BIOS
@ BIOS looks to
boot device to
load O5%
(2) DOS Kernel Y
10.5YS
{or IBMBIO.COM)
Commands in
SEEEE MSDOS.SYS —p| CONFIGC.S5YS are
(or IBMDOS.COM) executed
(Opticnal)
| COMMAND.COM | Commands in
AUTOEXEC.BAT
‘I‘ are executed
DOS prompt available (Optional)
@ Applications
?;dmr Emduws ——| Windows 3.x |—» Windows
ptional) applications

—=| DOS applications

0:0

Program
Status
Prefix

Interfatarea aplicatiilor ASM cu SO

TVI

Zona date BIOS

Zona date DOS

PSP

Stiva

Aplicatie \ __— ZonaTPA

Date
EXE __+ (Transient Program

Area)

Cod

COMMAND

Memoria video

ROM-BIOS

HARTA MEMORIEI

30

Interfatarea aplicatiillor ASM cu SO

00h
02h
04h
05h
OAh
OEh
12h
16h
2Ch
2Eh
5Ch

80h
81h

STRUCTURA PSP

Codul instructiunii INT 20h

Sfarsitul memoriei ocupate de program

Un octet rezervat

Codul instructiunii INT 21h

Adresa FAR a RTI 22h

Adresa FAR a RTI 23h

Adresa FAR a RTI 24h

21 octeti rezervati

Adresa segmentului de mediu

46 octeti rezervatsi

FCB1 si FCB2, cate 16 octeti pentru fisierele
standard de intrare si iesire (azi evitati)

Lungimea cozii liniei de comanda

Coada liniei de comanda (<127 octeti)

31

Interfatarea aplicatiilor ASM cu SO

SS=DS=ES=CS CS:0h —» PSP (2568)
CS:IP=CS:100H —»
Cod+
Date+
Stiva
SS:SP=SS:FFFEh —»
<64kB

SS:FFFFh —

.COM -un segment, apeluri near, terminare 4Ch, INT 20h, RET
- nu necesita relocare, toate simbolurile relative sunt
deplasamente in cadrul unui sg. unic

32

Interfatarea aplicatiilor ASM cu SO

ES=DS:0h —> PSP
CS=SS:0h —
CS:IP Cod
DS:0h —» Date
SS:0h —» _
Ss:sP_, | ~Uva

.EXE — mai multe segmente

- necesita relocare, ajustarea instr. care cont. adr. segment

- JMP/CALL FAR/MOQV reg, reg. seg/

Interfatarea aplicatiilor ASM cu SO

PR_COM SEGMENT PARA PUBLIC 'CODE'
ORG 100h
ASSUME CS:PR_COM,DS: PR_COM, SS: PR_COM, ES: PR_COM,

Start: JMP inceput
; datele

inceput:
; proceduri

MOV AX,4CO0H
INT 21H

PR_COM ENDS
END Start

Sablon program .COM

Interfatarea aplicatiilor ASM cu SO

STIVA SEGMENT PARA STACK 'STACK'

DW 512 DUP(?)
STIVA ENDS | ' ES=DS:0h —
DATA SEGMENT PARA PUBLIC DATA CS=SS-0h —

;DATE

, CS:IP —»
DATA ENDS DS:0h —

SS:0h —»

COD SEGMENT PARA PUBLIC 'CODE' SS:SP —>
MAIN PROC FAR

ASSUME CS:COD, DS:DATA, SS:STIVA,ES: NOTHING

PUSH DS ; DS contine adr. Segment de la inceputul PSP

XOR AX,AX ;AX=0

PUSH AX ; salvez offsetul =0 ptr inceputul PSP

MOV AX,DATA ;

MOV DS,AX ; DS poateaza inceputul seg. de date

RET

;proceduri
MAIN ENDP

Eﬁg E,'NA?; Sablon program .EXE

PSP

Cod

Date

Stiva

35

De ce nu se mai folosesc serviciile BIOS/DOS in SO moderne?

Sistemele de operare moderne (Windows, Linux, macOS pentru x86/x64) nu
folosesc intreruperile BIOS/DOS din urmatoarele motive principale:

Modul de operare al procesorului: SO-urile moderne ruleaza in Protected
Mode (Mod Protejat) sau Long Mode (pe 64 de biti), care ofera acces la mai
multa memorie (peste 4GB) si, esential, protectia memoriei.

Apelurile BIOS/DOS necesita ca procesorul sa intre inapoiin Real Mode, un
proces lent (16biti), ineficient si care compromite securitatea si stabilitatea
sistemului.

Multi-Tasking: Serviciile BIOS/DOS nu au fost concepute pentru medii multi-
tasking. Ele sunt sincrone (blocheaza sistemul pana la finalizare) si nu au
mecanisme de gestionare a resurselor intre mai multe programe.

Hardware Modern: BIOS nu cunoaste sau nu poate gestiona hardware-ul
modern complex (placi video avansate, controlere SATA/NVMe, retele).

36

Inlocuirea intreruperilor: mecanismele moderne

e Serviciile furnizate de intreruperile BIOS/DOS sunt inlocuite in SO moderne de
urmatoarele mecanisme:

A. Apeluri de Sistem (System Calls)

Acestea sunt interfata principala prin care o aplicatie solicita servicii de la
nucleul (kernel-ul) SO.

Cum functioneaza: Un apel de sistem este o solicitare de a executa o functie
privilegiatad (cum ar fi accesul la un fisier sau retea). In loc sa foloseasca
instructiunea INT, SO moderne folosesc mecanisme mult mai rapide si mai
sigure:

o Instructiuni specializate precum SYSENTER/SYSCALL (Intel/AMD) sau INT 0x80 (in

Linux mai vechi), care realizeaza o tranzitie rapida si controlata din User Mode(Mod
Utilizator) in Kernel Mode (Mod Nucleu).

Ex: In loc sa folosesti INT 21h (functia DOS) pentru a citi un fisier, un program
modern apeleaza o functie din API-ul SO (de ex. ReadFile in Windows sau
read in Linux) care, la randul sau, invoca apelul de sistem corespunzator.

37

B. Drivere de dispozitive (Device Drivers)

Programe specializate care ruleaza in kernel mode si asigura comunicarea
directa intre SO si o componenta hardware specifica.

Rolul lor: inlocuiesc complet rutinele generice de 1/0 din BIOS (INT13h, INT10h)
Fiecare producator hardware ofera drivere proprii, permitand SO-ului sa
exploateze la maximum caracteristicile specifice ale dispozitivelor (ex: placi
grafice moderne, unitati NVMe, SSD).

C. UEFI (Unified Extensible Firmware Interface)

inlocuitorul BIOS-ului: UEFI (sau, mai rar, Legacy BIOS) ramane un strat
software initial care porneste sistemul. insa, SO-urile moderne folosesc UEFI
doar pentru a initializa hardware-ul de baza si pentru a incarca bootloader-ul.

in timpul functionarii: Odata ce nucleul SO-ului este incarcat, acesta preia
controlul complet al hardware-ului si nu mai foloseste serviciile de rulare
(runtime services) ale UEFI/BIOS pentru I/0, bazandu-se exclusiv pe propriile
drivere si apeluri de sistem.

38

In concluzie, vechile intreruperi BIOS/DOS au fost inlocuite cu un
set de interfete stratificate, sigure si eficiente:

» UEFI/Firmware pentru pornire,
* Drivere pentru gestionarea hardware-ului si

* Apeluride sistem pentru interactiunea aplicatiilor cu nucleul SO-ului.

39

Un exemplu simplu de program in assembly x86 (pentru MASM) care creeaza o

fereastra Windows folosind WinAPI.

* Programul afiseaza "Hello World!" intr-un MessageBox si apoi inchide aplicatia.
Este un GUI minimal, compilabil cu MASM32 sau Visual Studio.

Codul Sursa (hello_win.asm)

.386
.model flat, stdcall
option casemap:none

include windows.inc
include user32.inc
include kernel32.inc
includelib user32.1ib
includelib kernel32.1ib

.data

msgTitle db "Assembly WinAPI", O
msgText db "Hello World din
Assembly!", O

.code
start:
invoke MessageBoxA, NULL, addr
msgText, addr msgTitle, MB OK
invoke ExitProcess, eax
end start

Compilare si Rulare

Compileaza cu MASM: ml /c /coff

hello_win.asm apoi link /subsystem:windows
hello_win.obj user32.lib kernel32.lib.

Ruleaza hello_win.exe pe Windows x86 (32-bit).
Pentru x64, se adapteaza cu MASM64 si registrele
RCX/RDX etc. Acest cod inlocuieste complet
BIOS/DOS cu apeluri native Win32.

Variante Usoare

Pentru consola: Adauga include
msvcrt.inc si includelib msvcrt.lib, apoi
foloseste printf in loc de MessageBox.

Pentru loop tastatura:

Integreaza GetAsyncKeyState in bucla WM_PAINT
pentru a citi taste si scrie text dinamic

40

3. UEFI — “Noul Bios”

Unified Extensible Firmware Interface

Boot Process (Conventional BIOS)

Management Event

- -~ ” ~
/ fFL‘ in Real Mode A" CPU in Protected Mode
, N .
BIOS Power- Load and MBR Boot Early OS5 LI Full O5 User Mode I
Hboot | On-Self- [*|Execute i > Loader " |Kemel T Kernel [* Processes
I|block Test Option ROMs Init. Init. I
11 [
I
' ' 't
! BIOS Services | [Kemel Services |
I
[/
\ Hardware
-~ \
e el ;| SMIHandlers :
I |
| 4 |
| System |
I |
/

System Management Mode

UEFI
Unified Extensible Firmware Interface

O nouatehnologie promite accelerarea pornirii PC-ului.

La DOS - inainte ca SO sa dea vreun “semn de viata” va apare tot timpul un ecran cu logo-
ul producatorului placii de baza.

- In acest timp, BIOS-ul face numeroase verificari, detectand daca vreo componenta a PC-
ului este defecta (POST).

- Problema BIOS-ului este ca :

BIOS-ul a fost conceput de mai bine de 40 de ani, iar in mare parte a ramas neschimbat
(dezvoltat pe 16 biti)

- Din anul 2000 (1998) Intel a lucrat la o noua interfata firmware denumita EFI.

- Din 2005 a fost infiintat un organism independent, numit Unified EFI 0S S
Forum, care gestioneaza specificatiile noului standard, denumit UEFI. Loader | E
- Acest standard nu este sustinut doar de Intel, ci si de alte companii, . = -ﬁ
cum ar fi AMD, Microsoft, Apple si Dell. _ 8

. £
- UEFI poate rula deasupra traditionalului BIOS sau in locul lui. BIOS 8

Hardware;;

EFIl / UEFI History Timeline

(N
) g frameworkl
S 0.9 Spec
- PC Era Intel®
8 1980s Itanium®
amm Platforms
= 64 bit
8 develops
Q
) ' |

L !
c IBM 16 Bit EFI only way EFI Sampl | EFI Dev Kit
= ple EDK
- BIOS ;:;;?3:1@) Implementation ()
)
E Platforms 1.10.14.6X
)
qE, Tianocore.org
(=% Open Source
e \
-

Open Source EFI Developer Kit (EDK) htip://www.tianocore.Sourceforge.net
UEFI Specifications - http://www.uefi.org

44

http://tianocore.org/
http://www.tianocore.sourceforge.net/
http://www.uefi.org/

Specifications and code

http://uefi.org

UEFI 2.3.

YN

Pl1.2
Shell 2.0 Packaging 1.0

A4

2009 2010 2011-16

SCT UEFI 2.0 SCT UEFI 2.1 SCT UEFI 2.3

@
EDK 1.01: EDK 1.04: EDK 1.06: UEFI
" UEFI 2.0 UEFI 2.1 2.1+ =X
=) Pl 1.0 P11.0
-
3 &
c @Q SCT EDK I1*: UEFI UDK2010: UDK2016
£ _,’b Pl 1.0 2.1+ UEFI1 2.3 UEF! 2.6
%_ PI11.0 PI1.2 PI1.4
£ http://tianocore.org https://github.com/tianocore/edk2

All products, dates, and programs are based on current expectations and subject to change without notice

PI- platform initialization

OS loaders l

Non
EFI
OS

Legacy
BIOS

Analogie UEFI cu vechiul DOS: BIOS
http://www.uefi.org/learning_center/papers/

https://software.intel.com/sites/default/files/m/d/4/1/d/8/Shell5.jpg
http://www.uefi.org/learning_center/papers/

BIOS vs UEFI

Booting Old Way #UnhappyGhost

BIOS MBR [

Basic Input Master Boot

Output System Record m)

For more posts visit: Flo.com/geekschOO0l
unhappyghost.com

UEFI Operating

Extensible) J Kernel P2 System

Firmware
Interface

Avantajele UEFI Operating system

- Unul dintre marile avantaje cu care cocheteaza A
Intel este viteza mai mare fata de cea a BIOS-ului.
BIOS-ul functioneaza ca un strat care face legatura
dintre componentele hardware si SO. U
- BIOS-ul cauta primii 512B dupa un boot-loader.
In cazul HDD-urilor, acesti bytes se afla in MBR-ul
(master boot record), care initializeaza SO Hardware

[Extensible Firmware Interface]

e Unul dintre marile dezavantaje ale BIOS-ului este faptul ca se bazeaza pe
instructiuni in limbaj de asamblare (ASM) pe 16 biti si nu poate accesa in
mod direct componentele mai noi pe 64 de biti.

e Cealalta problema este aceea ca nu exista un standard fizic ptr.
componentele mai noi pe 64 de biti, astfel incat producatorii vin cu
modificari proprii.

Intel doreste rezolvarea acestor probleme cu ajutorul UEFI.

e Software (programe/date) care a fost scris in memoria nevolatila (ROM)
e Firmware-ul este o combinatie de software si hardware. ROM-urile, PROM-urile, Flash-urile si
EPROM-urile pe care sunt inregistrate date/programe sunt firmware.

Etapele bootarii prin UEFI (intel.

. UEFI

! Interface
4 OS-Absent
Board :

Transient OS
Init

Environment

Q)

Transient OS
Boot Loader

E_FI Driver ~~ Boot C) OS-Present
Dlspatcher Manager App

Intrinsic Final OS Boot Final OS | 5
Services Loader Environment 1

Security | Pre EFI | Driver Execution | Boot Dev Transient Run Time After
(SEC) | Initialization Enwg;?énent SBGEI;ESCJ‘ System Load (RT) Life
(PEI) (BAE) (o) (TSL) (AL)

Power on—>[. . Platform initialization] =— [....0Sboot....] > Shutdown

Boot Execution Flow .

https://resources.infosecinstitute.com/uefi-and-tpm/

https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/

Etapele initializarii prin UEFI

e 1. Etapa SEC este prima faza in arhitectura Pl (platform initialization)

- contine codul de inceput care este executat de CPU, este in principiu acela mostenit
- este cod minimal dezvoltat in asamblare fiind dependent de arhitectura si nu este portabil
- se executa direct din flash, este necomprimat

e 2. Pre-EFl Initialization (PEI), prin care este initializat procesorul, memoria si
chipset-ul (placa).

e 3. Driver Execution Environment (DXE).

In acest punct are loc pornirea in paralel a restului componentelor hardware.
- Pe parcursul acestei etape apare si primul spor de viteza: UEFI integreaza in mod direct
toate driverele, de aceea in momentul pornirii SO, acestea nu mai trebuie sa fie incarcate.
Pe langa sporul evident de viteza, aceasta etapa poate aduce si un spor de fiabilitate, driver-
ele functionand pe toate SO, astfel ca problema drivere-lor pe distributii Linux va fi de
domeniul trecutului.?!
- Alt avantaj al initializarii mai rapide al drivere-lor poate fi faptul ca interfetele pentru UEFI
vor putea fi mai sofisticate, placa grafica putand fi folosita la intreg potentialul si se poate
realiza chiar o conexiune la internet, datorita drivere-lor pentru placa de retea.

51

4. Boot Device Select - UEFI nu va cauta bootloader-ul pe toate discurile, deoarece discul de
boot va fi setat in prealabil la instalarea UEFI, prin aceasta metoda economisindu-se un
anumit timp.

- Una dintre cele mai utile inovatii aduse de UEFI este crearea unei partitii EFl, pe care se vor
putea stoca aplicatii de diagnosticare a PC-ului sau chiar aplicatii antivirus ce vor rula, chiar
daca SO nu porneste.

* UEFI fiind o tehnologie noua va oferi suport pentru componentele hardware de ultima
generatie. Pana acum, spatiului maxim de stocare ce putea fi accesat era de 2 TB (232 de
sectoare de cate 512 B), asta din cauza limitarii BIOS-ului. UEFI lucreaza cu ajutorul GPT
(GUID Partition Table), care are adrese pe 64 de biti, ceea ce inseamna ca poate adresa pana
la 9 ZB (1zettabyte ~ 1 miliard de terabytes). Suportul pentru GPT exista inca de la Windows
Vista SP1 x64.

5. Etapa TSL (Transient System Load) - este punctul in care renuntam la codul firmware, ptr.
codul stocat de obicei pe HDD. Daca sistemul ruleaza cu SecureBoot activat, BDS va verifica
semnatura inainte de a incarca codul Tn aceasta faza si impiedica orice cod ne-semnat sa se
incarce

6. Etapa RT (Run Time) -1n mod obisnuit, atunci cAnd boot loader-ul SO termind, se va apela
ExitBootService. Astfel, se va recupera majoritatea memoriei UEFI, astfel incat SO sa o poata
utiliza, chiar daca este retinuta o anumita memorie pentru a fi folosita pentru tabelul de
servicii Runtime.

7. Etapa AL (After Life) - este pusa la sfarsit, formal astfel incat, din punct de vedere
arhitectural, a avea optiunea de a face “diverse operatii" inainte de oprire

Advantages of UEFI vs. BIOS

Interface | LegacyBIOS | UEFI

Architecture x86 / X64 only Agnostic
Mode 16 bit (real mode) 32/64 bit

Boot Partition MBR (2.2 TB limit) GPT (9.4 ZB* limit)

Runtime No Yes
Services

Driver model No Yes

POST Graphics Graphical Output Protocol
(GOP)

*A zettabyte is equal to 1B terabytes. The lotal amount of global dala was expected fo pass 1.2 ZB sometime during 2010.

https://software.intel.com/en-us/articles/uefi-introduction

54

https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction

Class 1: UEFI
with CSIM
only

Class O:
Legacy BIOS

Class 2: Both Class 3:
UEFI and UEFI Only
CSM (no CSM)

e Forumul UEFI defineste 4 tipuri de platforme (“clase”) bazate pe prezenta CSM .
(compatibility service module)

Windows 8 Boot Flow

= Windows 8 installs UEFI OS Windows*

Loader if UEFI is detected
i : Legacy BIOS OS
= Most PCs today boot through UEF O3 Loader Loader
CSM path PX
= For compatibility the CSM boot _‘ F
path available Compatibility

UEFI

Boot & Runtime Service Module

= Windows 8 logo requirement to

boot UEFI only (cannot run csm Sy Legacy ver
in client builds) Sefvices picicy LSt e

= Client must boot with UEFI
secure boot enabled

= For server if implemented

Platform Specific Firmware

System Hardware

UEFI Boot Path

Legacy Boot Path
A% ~

Windows 8 Certification Requirements - UEFI Boot
Boot Performance Requirements

\\ \ l“'\
y - . Explorer
\ Hiber Resume (<= 4.25s D?:‘;'Eel;?'t Init *
‘ 1) (<=1759) S 56
_/

	Slide 1: Curs 10 Servicii sistem Interfata aplicatiilor ASM cu SO
	Slide 2: Cuprins
	Slide 3
	Slide 4: Servicii DOS - INT 21h
	Slide 5: Servicii DOS - INT 21h
	Slide 6: Servicii DOS - INT 21h
	Slide 7: Servicii DOS - INT 21h
	Slide 8: INT 21h
	Slide 9: INT 21h
	Slide 10
	Slide 11
	Slide 12: INT 21h
	Slide 13: INT 21h
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Redirectarea unei intreruperi – Exemplu mod de realizare: - se inlocuieste in TVI adresa rutinei vechi cu adresa noii rutine; - la terminarea aplicatiei se reface vechea adresa in TVI - noua rutina va contine noul “driver” al resursei (intre
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Recomandari de scriere a rutinelor
	Slide 25: Recomandari de scriere a rutinelor (cont.)
	Slide 26
	Slide 27
	Slide 28: 2. Interfatarea aplicatiilor ASM cu SO
	Slide 29
	Slide 30: Interfatarea aplicatiilor ASM cu SO
	Slide 31: Interfatarea aplicatiilor ASM cu SO
	Slide 32: Interfatarea aplicatiilor ASM cu SO
	Slide 33: Interfatarea aplicatiilor ASM cu SO
	Slide 34: Interfatarea aplicatiilor ASM cu SO
	Slide 35: Interfatarea aplicatiilor ASM cu SO
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: 3. UEFI – “Noul Bios” Unified Extensible Firmware Interface
	Slide 43: UEFI Unified Extensible Firmware Interface O noua tehnologie promite accelerarea pornirii PC-ului. La DOS - inainte ca SO sa dea vreun “semn de viata” va apare tot timpul un ecran cu logo-ul producatorului placii de baza.
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 55
	Slide 56

