
Curs 10

Servicii sistem
Interfata aplicatiilor ASM cu SO

“Simplitatea este complexitatea inteleasa”.
 C. Brancusi

2

✓ Servicii sistem - INT21h
✓ Interfata aplicatiilor ASM cu SO. Aplicatii .com si .exe
✓ UEFI

Cuprins

3

1. Servicii sistem

 INT21h INT

 10h

 16h… IN/OUT

Aplicatie utilizator

DOS

BIOS

Hardware

Ex. Sa se preia de la tastatura un sir de caractere si sa se afiseze pana la tastarea ‘ESC’.

4

Servicii DOS - INT 21h

INT 20H Terminate a program
 INT 21H DOS Services
 INT 22H Terminate address
 INT 23H Control-Break address
 INT 24H Critical Error Handler address
 INT 25H/26H Absolute Disk Read/Write
 INT 27H Terminate but Stay Resident
 INT 28H DOS Idle (safe to pop up)
 INT 29H DOS Internal Fast Screen Write
 INT 2eH Perform DOS Command
 INT 2fH Multiplex (DoubleSpace, spooler, TSR control, other APIs)
 INT 31H DPMI DOS Protected Mode Interface Services
 INT 33H Mouse Support
 INT 67H EMS Expanded Memory Manager (HIMEM.SYS)

5

Servicii DOS - INT 21h

⚫ INT 20h – Terminare program se foloseste ptr. a parasi aplicatia si a
returna controlul procesului parinte (ex. COMMAND.COM)

 OBS. CS=PSP; JMP/RET => PSP:0

⚫ INT 21h - peste 100 de functii

 - terminare, iesire program

 - citire KBD, display char, sir..

 - open/close/read/write/delete file

 - MD/RD/CD (directoare)

 - set/get vector (TVI)

 - ……………..

6

Servicii DOS - INT 21h

Functii DOS 25H Set INT Vector 3cH Create File 4eH Find File/GetInfo
Grup de Servicii 2aH Get Sys Date 3dH Open File 4fH Find Next File
 Interuperi DOS 2bH Set Sys Date 3eH Close File 50H Set Cur PSP
 2cH Get Sys Time 3fH Read File 51H Get Cur PSP
 00H Terminate 2dH Set Sys Time 40H Write File 52H List Of Lists
 01H Kybd Input 2eH Set Verify 41H Delete File 54H Get Verify
 02H Display Char 2fH Get DTA 42H Move File Ptr 56H Rename/Move File
 05H Prn Output 30H Get Version 43H File Attrib 57H Time/Date File
 06H Console I/O 31H TSR 44H IOCTL 58H MemAlloc Strategy
 07H NoEcho RawInp 32H Get DPB 45H Dup Handle 59H Get Err Info
 08H NoEcho Inp 3300H Get BreakLvl 46H Redir Handle 5aH Create Uniq File
 09H Display Text 3301H Set BreakLvl 47H Get Dflt Dir 5bH Create New File
 0aH Bufrd Input 3305H Get Boot Drv 48H Mem Alloc 5cH Lock File
 0bH Get InpStatus 34H Get InDOS 49H Mem Free 5eH Network Misc
 0cH Clear & Input 35H Get INT Vector 4aH Mem Resize 5fH Network Redirect
 0dH Reset Disk 36H Disk Size/Free 4bH Exec 65H National Lang Fns
 0eH Set Dflt Disk 39H MkDir 4cH Terminate 67H Set Handle Cnt
 19H Get Dflt Disk 3aH RmDir 4dH Get Exit Code 68H Commit File Data
 1aH Set DTA 3bH ChDir 6cH Open/Create File

7

Servicii DOS - INT 21h

AH=0 - terminare program CS=PSP

AH=4Ch - terminare program cu cod de sfarsit (elib.mem.)

AH=4Dh - preluare cod terminare

AH= 1h - citire caracter de la tastatura in AL

AH= 2h - display caracter din DL, la perifericul standard de iesire

AH= 9 h - display sir de caractere$, DX=offset sir

AH=25h - seteaza noua adresa a rutinei de intr. in TVI (AL=tip vector)

AH=35h - salveaza adresa rutinei din TVI (ES:DX)

AH= terminate type

01h normal termination (INT 20h, INT 21h Fct. 00h, or INT 21 Fct. 4Ch)

02h Ctrl-C or Ctrl-Break abort

03h termination by critical error handler

04h terminate and stay resident (INT 21h Function or INT 27h)

8

INT 21h

⚫ functia 01h : input caracter cu ecou
 AH=01h
- Asteapta pana cand este citit un caracter de la tastatura, apoi trimite

ecoul pe display; caracterul citit va fi in AL

 MOV AH,1
 INT 21H ; AL= cod ASCII al caracterul tastat

⚫ functia 02h : afisare caracter pe monitor
 AH=02h, DL=caracter de afisat

MOV AH, 02 ;
MOV DL, ‘k’ ;
INT 21H

9

INT 21h

10

⚫ Functia 09h ; IESIRE TEXT LA DISPLAY

 ;Afisez pe ecran sir de caractere$, cu offset in DX

INT 21h

MOV AH,9 ; fct afisare sir caractere

MOV DX, OFFSET MESAJ; ; DX contine adresa primului caracter

INT 21H ; din sir

……………

.data

MESAJ DB “ ACESTA ESTE UN TEXT $”

11

• Functia 0Ah : INPUT STRING FROM KEYBOARD
 ;set AH=0Ah, DX=offset- adresa la care memorez caracterele

- I byte specifica dimensiunea buffer-ului
- II byte specifica nr. caracterelor introduse (contor curent)
- de la al III–lea byte => datele introduse

INT 21h

ORG 100h

DATA1 DB 6,?,6DUP(FFh) ;0100h=06, ??,0102h-07h = 0FFh

START: MOV AH,0Ah ; fct de citire sir cu INT 21h

 MOV DX,OFFSET DATA1 ; DX= adresa buffer

 INT 21h

12

INT 21h

⚫ Functia 35h ; GET VECTOR INTR.

In: AH=35h Out: ES= Adr. Segm. din TVI

 AL=tip INTR. BX=Adr. Offset din TVI

⚫ Functia 25h ; SET VECTOR INTR.

In: AH=25h Out: DS= =>> 0: 4*tip+2 in TVI

 AL=tip INTR. DX= =>> 0:4*tip in TVI

DS=Noua Adr. Segm.

DX=Noua Adr. Offset

13

INT 21h
⚫ Functia 3Ch ; Crearea un nou fisier

In: AH=3Ch; DS:DX = Adr.Identif. Fisier; CX=atribut

Out: AX=error , if C=1// else AX = file handle (if C=0)
⚫ Fie identificatorul de fisier: A:\PROGS\PROG1.ASM

⚫ Erori posibile:

⬧ Calea nu exista

⬧ toate file handles sunt in uz

⬧ acces interzis --- director plin sau fisier read-only

Ex: Scrieti secventa de instructiuni ptr. a crea un nou fisier read-only numit "FILE1.txt"

FNAME DB ‘C:\file1.txt', 0

HANDLE DW ?

.CODE

MOV AX,@DATA

MOV DS, AX ; initializez DS

MOV AH, 3CH ; open file

LEA DX, FNAME ; copiez adresa FNAME in DX

MOV CL, 1 ; atribut read-only

 INT 21H ; open the file

MOV HANDLE, AX ; handle or err code

JC OPEN_ERROR ; jump if error ….....

14

⚫ Functia 3Dh ; deschidere fisier
In: AH=3Dh, DS:DX = Adr.Identif. Fisier; CX=atribut
AL=mod deschidere (0-read/1-write/2-R/W)
Out: AX=error , if C=1//else AX=file handle if C=0

⚫ Functia 3Eh - "CLOSE" - CLOSE FILE
In: BX = file handle
Out: CF =0, if successful, AX destroyed
CF=1 if error, AX = error code (06h)

⚫ Functia 3Fh - "READ" - READ FROM FILE OR DEVICE
In: BX = file handle
 CX = number of bytes to read
 DS:DX -> buffer for data
Return: CF=0 if successful - AX = number of bytes actualy read (0 if an EOF before call)
CF =1 error AX = error code (05h,06h)

⚫ Functia 40h - "WRITE" - WRITE TO FILE OR DEVICE
In: BX = file handle
 CX = number of bytes to write
 DS:DX -> data to write
Out: CF=0 if successful -AX = number of bytes actualy written
CF=1 if error - AX = error code (05h,06h)

File handle= un nr. pe care SO il asigneaza temporar unui fisier cand este deschis.

SO foloseste file handle intern cand acceseaza fisierul.

15

 TITLE PROG 1 program display
.MODEL SMALL
.STACK 64
.DATA

MESAJ DB ‘Rutina Test display’, ‘$’
.CODE
MAIN PROC FAR

MOV AX, @DATA
MOV DS, AX ; initializez DS

CALL CLEAR ;clear screen
CALL CURSOR ;set pozitie cursor
CALL DISPLAY ;display mesaj
MOV AH, 4CH
INT 21H

MAIN ENDP

EX.1. Scrieti un program care curata ecranul, pozitioneaza cursorul in centrul ecranului
si afiseaza un mesaj din segmentul de date

16

;subrutina de stergere ecran

CLEAR PROC

MOV AX, 0600H ;functia scroll up screen

MOV BH, 7 ; atribut normal (A/N)

MOV CX, 0 ;scroll rind = 00, col = 00 (coltul stanga sus)

MOV DX, 184FH ;rind = 18H(24), col = 4FH(79)

INT 10H ;apel intr. ptr. clear screen

RET

CLEAR ENDP

17

;subrutina setare pozitie cursor la centru ecran
CURSOR PROC

MOV AH, 2 ;set cursor
MOV BH, 0 ;pag 00
MOV DH, 13 ;rand centru
MOV DL, 39 ;col centru
INT 10H ; BIOS

 RET
CURSOR ENDP
;--
; display sir pe ecran
DISPLAY PROC

MOV AH, 9 ;fct. display sir
MOV DX, OFFSET MESAJ ;DX pointeaza output buffer
INT 21H ;
RET
DISPLAY ENDP

END MAIN

18

EX2. Genereaza sunet (bell) continuu pâna se tasteaza ‘Q’ sau ‘q’

.MODEL SMALL

.STACK 64

.DATA
MESAJ DB ‘Pentru a opri sunetul BELL apasati tasta Q (/ q) $’

.CODE
MAIN PROC

MOV AX, @DATA
MOV DS, AX

MOV AH, 9
MOV DX, OFFSET MESSAGE ;display mesaj
INT 21H

AGAIN: MOV AH, 2 ; afisare caracter (DOS)
MOV DL, 7 ;generez sunet bell
INT 21H
MOV AH, 1 ;verific tastare (BIOS)
INT 16H
JZ AGAIN ; daca nu tastez, generez bell

19

MOV AH, 0 ;citesc caracter
INT 16H
CMP AL, ‘Q’ ;AL= ‘Q’?
JE EXIT ;daca DA, exit
CMP AL, ‘q’ ;AL= ‘q’?
JE EXIT ;daca DA, exit
JMP AGAIN ;daca nu, generez sunet bell

EXIT: MOV AH, 4CH
INT 21H
MAIN ENDP
END

• Ex3. Sa se scrie un program in LA care sa creeze un fisier text file.txt
in care sa scrie un sir de caractere definit in segmental de date

20

Redirectarea unei intreruperi – Exemplu

 mod de realizare:

- se inlocuieste in TVI adresa rutinei vechi cu adresa noii rutine;
- la terminarea aplicatiei se reface vechea adresa in TVI
- noua rutina va contine noul “driver” al resursei (intreruperii)

21

. DATA
OLDVECT DW 2DUP(?) ; aici salvez vechia adr. a rutinei de întrerupere

;initializare………..

MOV AH, 35h ; 35h-funcţie sistem pentru citirea
 ;vectorului de întrerupere

MOV AL, x ; x – tipul întreruperii redirectate
INT 21h ;apelul funcţiei sistem; funcţia returnează

;în ES:BX adresa rutinei de tip x
MOV OLDVECT, BX ; salvare adresă offset (IP)
MOV BX, ES
MOV OLDVECT+2, BX ; salvare adresă segment (CS)
MOV AX, SEG RTI
MOV DS, AX ;DS <- adresa segment a noii rutine de

; tratare a întreruperii (CS nou)
MOV DX, offset RTI ; DX <- adresa offset a noii rutine de întrerupere (IP nou)
MOV AH, 25h ; 25h - funcţia de scriere vector in TVI;

; în DS:DX se pune adresa rutinei de întrerupere
MOV AL,x ;x – tip întrerupere
INT 21h ;apelul funcţiei sistem

22

……….

; program

………

INT x

……

; sfîrşit program

MOV AX, OLDVECT+2 ; refacerea adresei vechi

MOV DS, AX

MOV DX, OLDVECT

MOV AH, 25h ; funcţia de scriere vector

MOV AL,x ; n – nivel întrerupere

INT 21h ; înscrierea vechiului vector în

;tabela de intreruperi

…….

23

; rutina de tratare a întreruperii

RTI PROC FAR ; noua rutina de tratare a intreruperii

PUSH r ; salvarea registrelor utilizate în cadrul

.......... ; rutinei (r = AX, BX, ….)
STI ; validare întrerupere, IF=1
………..
; corpul rutinei
………..

; sfîrşitul rutinei
POP r ; refacere registre salvate
IRET

RTI ENDP

24

Recomandari de scriere a rutinelor

⚫ parametrii de apel se transmit prin:

⚫ registrii procesorului

⚫ prin stiva (daca aplicatia se combina cu module scrise in HLL);

⚫ Reg. BP se foloseste pt. adresarea parametrilor de pe stiva

⚫ se precizeaza modul de transmitere a parametrilor prin comentarii, ex.

;nume functie

; descriere tip operatie efectuata

; Intrari: ...

; Iesiri: ...

; registre afectate

25

Recomandari de scriere a rutinelor (cont.)

⚫ continutul registrelor nu trebuie afectat de executia rutinei;

⚫ registrele folosite in procedura se vor salva pe stiva si se vor reface la
sfarsitul rutinei

⚫ exceptie: registrele care contin parametrii de iesire

⚫ majoritatea functiilor sistem nu sunt reentrante

⚫ nu pot fi apelate din nou inainte de terminare

26

• Tema1: Citeste numele de la tastatura si afiseaza lungimea lui:

TITLE PROG_NUME
;Citeste nume si afisez lungimea

.MODEL SMALL

.STACK 64

.DATA
MSG1 DB ‘Cum va numiti?$’
BUFFER1 DB 9, ?, 9 DUP(0)
MSG2 DB CR, LF, ‘Numarul de litere al numelui este: $’
RIND EQU 08
COL EQU 05
CR EQU 0DH ;
LF EQU 0AH ;

……………………..

27

• Tema2: Analizati aplicatia de mai jos si stabiliti care este efectul ei.
.model small
.stack 256
.code
 mov ax,@data
 mov ds,ax
 mov ax,0B800h ; segment of video buffer
 mov es,ax ; put this into es
 mov ah,3 ; attribute - cyan
 mov cx,19 ; length of string to print
 mov si,offset Text ; DX:SI points to string
 xor di,di ; DI=0
wr_Char: lodsb ; put next character into al
 mov es:[di],al ; output character to video memory
 inc di ; move along to next column
 mov es:[di],ah ; output attribute to video memory
 inc di
 loop wr_Char ; loop until done
 mov ax,4C00h

……. ; return to DOS int 21h
.data

 Text DB “Acesta este un text“
 end

28

2. Interfatarea aplicatiilor ASM cu SO

➢ Componentele SO DOS:
1. ROM BIOS (POST, bootstrap, I/O)
2. DOS BIOS (IBM.IO/IO.SYS, drivere CON, PRN, AUX, CLK, FD,HDD)

- acces la drivere, implica apel rutine ROM BIOS
3. DOS kernel (MSDOS.SYS/IBMDOS.COM) - functii de acces la

fisiere (I/O la nivel caracter, independent de hard, INT 21h)
4. Interpretorul de comenzi (shell - COMMAND.COM)
 - partea rezidenta (handlere=rutine tratare diferite actiuni)
 - partea tranzitorie (C:\>, citeste cda, com. interne, la terminare control =>

partea rezidenta
 - rutina de initializare

 COMENZI: Interne, Externe, Indirecte (.bat)

29

Procesul de Bootare

30

Interfatarea aplicatiilor ASM cu SO

HARTA MEMORIEI

Program

Status

Prefix

0:0

31

Interfatarea aplicatiilor ASM cu SO

STRUCTURA PSP

32

Interfatarea aplicatiilor ASM cu SO

.COM - un segment, apeluri near, terminare 4Ch, INT 20h, RET
 - nu necesita relocare, toate simbolurile relative sunt

deplasamente in cadrul unui sg. unic

<64kB

(256 B)

33

Interfatarea aplicatiilor ASM cu SO

.EXE – mai multe segmente

- necesita relocare, ajustarea instr. care cont. adr. segment

- JMP/CALL FAR/MOV reg, reg. seg/

34

Interfatarea aplicatiilor ASM cu SO

PR_COM SEGMENT PARA PUBLIC 'CODE'
 ORG 100h
 ASSUME CS:PR_COM,DS: PR_COM, SS: PR_COM, ES: PR_COM,

Start: JMP inceput

 ; datele

inceput:
 ; proceduri

.............
 MOV AX,4C00H
 INT 21H
PR_COM ENDS
 END Start

Sablon program .COM

35

Interfatarea aplicatiilor ASM cu SO

STIVA SEGMENT PARA STACK 'STACK'
 DW 512 DUP(?)
STIVA ENDS
DATA SEGMENT PARA PUBLIC 'DATA’
 ;DATE
 ;
DATA ENDS

COD SEGMENT PARA PUBLIC 'CODE'
MAIN PROC FAR
 ASSUME CS:COD, DS:DATA, SS:STIVA,ES: NOTHING
 PUSH DS ; DS contine adr. Segment de la inceputul PSP
 XOR AX,AX ;AX=0
 PUSH AX ; salvez offsetul =0 ptr inceputul PSP
 MOV AX,DATA ;
 MOV DS,AX ; DS poateaza inceputul seg. de date
..
 RET
 ;proceduri
MAIN ENDP
 COD ENDS
 END MAIN Sablon program .EXE

36

De ce nu se mai folosesc serviciile BIOS/DOS în SO moderne?

• Sistemele de operare moderne (Windows, Linux, macOS pentru x86/x64) nu
folosesc întreruperile BIOS/DOS din următoarele motive principale:

• Modul de operare al procesorului: SO-urile moderne rulează în Protected
Mode (Mod Protejat) sau Long Mode (pe 64 de biți), care oferă acces la mai
multă memorie (peste 4GB) și, esențial, protecția memoriei.
Apelurile BIOS/DOS necesită ca procesorul să intre înapoi în Real Mode, un
proces lent (16biti), ineficient și care compromite securitatea și stabilitatea
sistemului.

• Multi-Tasking: Serviciile BIOS/DOS nu au fost concepute pentru medii multi-
tasking. Ele sunt sincrone (blochează sistemul până la finalizare) și nu au
mecanisme de gestionare a resurselor între mai multe programe.

• Hardware Modern: BIOS nu cunoaște sau nu poate gestiona hardware-ul
modern complex (plăci video avansate, controlere SATA/NVMe, rețele).

37

Înlocuirea intreruperilor: mecanismele moderne

• Serviciile furnizate de întreruperile BIOS/DOS sunt înlocuite în SO moderne de
următoarele mecanisme:

 A. Apeluri de Sistem (System Calls)

• Acestea sunt interfața principală prin care o aplicație solicită servicii de la
nucleul (kernel-ul) SO.

• Cum funcționează: Un apel de sistem este o solicitare de a executa o funcție
privilegiată (cum ar fi accesul la un fișier sau rețea). În loc să folosească
instrucțiunea INT, SO moderne folosesc mecanisme mult mai rapide și mai
sigure:

o Instrucțiuni specializate precum SYSENTER/SYSCALL (Intel/AMD) sau INT 0x80 (în
Linux mai vechi), care realizează o tranziție rapidă și controlată din User Mode(Mod
Utilizator) în Kernel Mode (Mod Nucleu).

• Ex: În loc să folosești INT 21h (funcția DOS) pentru a citi un fișier, un program
modern apelează o funcție din API-ul SO (de ex. ReadFile în Windows sau
read în Linux) care, la rândul său, invocă apelul de sistem corespunzător.

38

B. Drivere de dispozitive (Device Drivers)

• Programe specializate care rulează în kernel mode și asigură comunicarea
directă între SO și o componentă hardware specifică.

• Rolul lor: Înlocuiesc complet rutinele generice de I/O din BIOS (INT13h, INT10h)
Fiecare producător hardware oferă drivere proprii, permițând SO-ului să
exploateze la maximum caracteristicile specifice ale dispozitivelor (ex: plăci
grafice moderne, unități NVMe, SSD).

 C. UEFI (Unified Extensible Firmware Interface)

• Înlocuitorul BIOS-ului: UEFI (sau, mai rar, Legacy BIOS) rămâne un strat
software inițial care pornește sistemul. Însă, SO-urile moderne folosesc UEFI
doar pentru a inițializa hardware-ul de bază și pentru a încărca bootloader-ul.

• În timpul funcționării: Odată ce nucleul SO-ului este încărcat, acesta preia
controlul complet al hardware-ului și nu mai folosește serviciile de rulare
(runtime services) ale UEFI/BIOS pentru I/O, bazându-se exclusiv pe propriile
drivere și apeluri de sistem.

39

În concluzie, vechile întreruperi BIOS/DOS au fost înlocuite cu un
set de interfețe stratificate, sigure și eficiente:

• UEFI/Firmware pentru pornire,

• Drivere pentru gestionarea hardware-ului și

• Apeluri de sistem pentru interacțiunea aplicațiilor cu nucleul SO-ului.

40

Un exemplu simplu de program în assembly x86 (pentru MASM) care creează o
fereastră Windows folosind WinAPI.
• Programul afișează "Hello World!" într-un MessageBox și apoi închide aplicația.

Este un GUI minimal, compilabil cu MASM32 sau Visual Studio.
Codul Sursă (hello_win.asm)
.386

.model flat, stdcall

option casemap:none

include windows.inc

include user32.inc

include kernel32.inc

includelib user32.lib

includelib kernel32.lib

.data

msgTitle db "Assembly WinAPI", 0

msgText db "Hello World din

Assembly!", 0

.code

start:

invoke MessageBoxA, NULL, addr

msgText, addr msgTitle, MB_OK

invoke ExitProcess, eax

end start

Compilare și Rulare
Compilează cu MASM: ml /c /coff
hello_win.asm apoi link /subsystem:windows
hello_win.obj user32.lib kernel32.lib.
Rulează hello_win.exe pe Windows x86 (32-bit).
Pentru x64, se adaptează cu MASM64 și registrele
RCX/RDX etc. Acest cod înlocuiește complet
BIOS/DOS cu apeluri native Win32.

Variante Ușoare
Pentru consolă: Adaugă include
msvcrt.inc și includelib msvcrt.lib, apoi
folosește printf în loc de MessageBox.

Pentru loop tastatură:
Integrează GetAsyncKeyState în buclă WM_PAINT
pentru a citi taste și scrie text dinamic

3. UEFI – “Noul Bios”
Unified Extensible Firmware Interface

41
System Management Mode

UEFI

 Unified Extensible Firmware Interface

O noua tehnologie promite accelerarea pornirii PC-ului.

La DOS - inainte ca SO sa dea vreun “semn de viata” va apare tot timpul un ecran cu logo-
ul producatorului placii de baza.
- In acest timp, BIOS-ul face numeroase verificari, detectand daca vreo componenta a PC-
ului este defecta (POST).
- Problema BIOS-ului este ca :
BIOS-ul a fost conceput de mai bine de 40 de ani, iar in mare parte a ramas neschimbat
(dezvoltat pe 16 biti)
- Din anul 2000 (1998) Intel a lucrat la o noua interfata firmware denumita EFI.

- Din 2005 a fost infiintat un organism independent, numit Unified EFI
Forum, care gestioneaza specificatiile noului standard, denumit UEFI.
- Acest standard nu este sustinut doar de Intel, ci si de alte companii,
cum ar fi AMD, Microsoft, Apple si Dell.

- UEFI poate rula deasupra traditionalului BIOS sau in locul lui.

43

OS
Loader

Hardware

BIOS

UEFI

C
o
m

p
a
ti

b
il
it

y

44

EFI / UEFI History Timeline

20052000199519901985

PCI
Spec

S
p

e
c
if

ic
a
ti

o
n

s
I
m

p
le

m
e
n

ta
ti

o
n IBM 16 Bit

BIOS

Intel®
Itanium®
Platforms
64 bit
develops

EFI only way
to boot
Itanium®
Platforms

EFI
1.02

EFI Dev Kit
(EDK)

Tianocore.org

Open Source

EFI Sample
Implementation
1.10.14.6x

Open Source EFI Developer Kit (EDK) http://www.tianocore.Sourceforge.net

UEFI Specifications - http://www.uefi.org

PC Era
1980s

framework1
0.9 Spec

EFI
1.10

http://tianocore.org/
http://www.tianocore.sourceforge.net/
http://www.uefi.org/

45

UEFI Specification Timeline

PI- platform initialization

4646

https://software.intel.com/sites/default/files/m/d/4/1/d/8/450px-Shell5.jpg

Analogie UEFI cu vechiul DOS: BIOS
http://www.uefi.org/learning_center/papers/

https://software.intel.com/sites/default/files/m/d/4/1/d/8/Shell5.jpg
http://www.uefi.org/learning_center/papers/

47

Avantajele UEFI

- Unul dintre marile avantaje cu care cocheteaza
Intel este viteza mai mare fata de cea a BIOS-ului.
BIOS-ul functioneaza ca un strat care face legatura
dintre componentele hardware si SO.
- BIOS-ul cauta primii 512B dupa un boot-loader.
In cazul HDD-urilor, acesti bytes se afla in MBR-ul
(master boot record), care initializeaza SO

• Software (programe/date) care a fost scris în memoria nevolatila (ROM)
• Firmware-ul este o combinație de software și hardware. ROM-urile, PROM-urile, Flash-urile și

EPROM-urile pe care sunt înregistrate date/programe sunt firmware.

• Unul dintre marile dezavantaje ale BIOS-ului este faptul ca se bazeaza pe
instructiuni in limbaj de asamblare (ASM) pe 16 biti si nu poate accesa in
mod direct componentele mai noi pe 64 de biti.

• Cealalta problema este aceea ca nu exista un standard fizic ptr.
componentele mai noi pe 64 de biti, astfel incat producatorii vin cu
modificari proprii.
Intel doreste rezolvarea acestor probleme cu ajutorul UEFI.

505050

Etapele bootarii prin UEFI

Power on [. . Platform initialization . . …………] [. . . . OS boot] Shutdown

UEFI

InterfacePre
Verifier

Pre EFI

Initialization

(PEI)

Driver Execution
Environment

(DXE)

Boot Dev
Select
(BDS)

Transient

System Load

(TSL)

After

Life

(AL)

Run Time

(RT)

?

OS-Present

App

Final OS

Environment

Final OS Boot

Loader

OS-Absent

App

Transient OS

Environment

Transient OS

Boot Loader

Boot
Manager

CPU
Init

Chipset
Init

Board
Init

v
e

ri
fy

Device,

Bus, or

Service

Driver

EFI Driver
Dispatcher

Intrinsic

Services

Security

(SEC)

Boot Execution Flow

https://resources.infosecinstitute.com/uefi-and-tpm/

https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/
https://resources.infosecinstitute.com/uefi-and-tpm/

51

Etapele initializarii prin UEFI

• 1. Etapa SEC este prima faza in arhitectura PI (platform initialization)
 - contine codul de inceput care este executat de CPU, este în principiu acela moștenit
 - este cod minimal dezvoltat in asamblare fiind dependent de arhitectura si nu este portabil
 - se executa direct din flash, este necomprimat

• 2. Pre-EFI Initialization (PEI), prin care este initializat procesorul, memoria si
chipset-ul (placa).

• 3. Driver Execution Environment (DXE).
 In acest punct are loc pornirea in paralel a restului componentelor hardware.
 - Pe parcursul acestei etape apare si primul spor de viteza: UEFI integreaza in mod direct
toate driverele, de aceea in momentul pornirii SO, acestea nu mai trebuie sa fie incarcate.
Pe langa sporul evident de viteza, aceasta etapa poate aduce si un spor de fiabilitate, driver-
ele functionand pe toate SO, astfel ca problema drivere-lor pe distributii Linux va fi de
domeniul trecutului.?!
- Alt avantaj al initializarii mai rapide al drivere-lor poate fi faptul ca interfetele pentru UEFI
vor putea fi mai sofisticate, placa grafica putand fi folosita la intreg potentialul si se poate
realiza chiar o conexiune la internet, datorita drivere-lor pentru placa de retea.

52

4. Boot Device Select - UEFI nu va cauta bootloader-ul pe toate discurile, deoarece discul de
boot va fi setat in prealabil la instalarea UEFI, prin aceasta metoda economisindu-se un
anumit timp.

- Una dintre cele mai utile inovatii aduse de UEFI este crearea unei partitii EFI, pe care se vor
putea stoca aplicatii de diagnosticare a PC-ului sau chiar aplicatii antivirus ce vor rula, chiar
daca SO nu porneste.

• UEFI fiind o tehnologie noua va oferi suport pentru componentele hardware de ultima
generatie. Pana acum, spatiului maxim de stocare ce putea fi accesat era de 2 TB (232 de
sectoare de cate 512 B), asta din cauza limitarii BIOS-ului. UEFI lucreaza cu ajutorul GPT
(GUID Partition Table), care are adrese pe 64 de biti, ceea ce inseamna ca poate adresa pana
la 9 ZB (1zettabyte ~ 1 miliard de terabytes). Suportul pentru GPT exista inca de la Windows
Vista SP1 x64.

5. Etapa TSL (Transient System Load) - este punctul în care renunțăm la codul firmware, ptr.
codul stocat de obicei pe HDD. Dacă sistemul rulează cu SecureBoot activat, BDS va verifica
semnătura înainte de a încărca codul în această fază și impiedică orice cod ne-semnat sa se
incarce

6. Etapa RT (Run Time) - În mod obișnuit, atunci când boot loader-ul SO termină, se va apela
ExitBootService. Astfel, se va recupera majoritatea memoriei UEFI, astfel încât SO să o poată
utiliza, chiar dacă este reținută o anumită memorie pentru a fi folosită pentru tabelul de
servicii Runtime.

7. Etapa AL (After Life) - este pusa la sfarsit, formal astfel încât, din punct de vedere
arhitectural, a avea opțiunea de a face “diverse operatii" inainte de oprire

54

https://software.intel.com/en-us/articles/uefi-introduction

https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction
https://software.intel.com/en-us/articles/uefi-introduction

5555
• Forumul UEFI defineste 4 tipuri de platforme (“clase”) bazate pe prezenta CSM

(compatibility service module)

5656

	Slide 1: Curs 10 Servicii sistem Interfata aplicatiilor ASM cu SO
	Slide 2: Cuprins
	Slide 3
	Slide 4: Servicii DOS - INT 21h
	Slide 5: Servicii DOS - INT 21h
	Slide 6: Servicii DOS - INT 21h
	Slide 7: Servicii DOS - INT 21h
	Slide 8: INT 21h
	Slide 9: INT 21h
	Slide 10
	Slide 11
	Slide 12: INT 21h
	Slide 13: INT 21h
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Redirectarea unei intreruperi – Exemplu mod de realizare: - se inlocuieste in TVI adresa rutinei vechi cu adresa noii rutine; - la terminarea aplicatiei se reface vechea adresa in TVI - noua rutina va contine noul “driver” al resursei (intre
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Recomandari de scriere a rutinelor
	Slide 25: Recomandari de scriere a rutinelor (cont.)
	Slide 26
	Slide 27
	Slide 28: 2. Interfatarea aplicatiilor ASM cu SO
	Slide 29
	Slide 30: Interfatarea aplicatiilor ASM cu SO
	Slide 31: Interfatarea aplicatiilor ASM cu SO
	Slide 32: Interfatarea aplicatiilor ASM cu SO
	Slide 33: Interfatarea aplicatiilor ASM cu SO
	Slide 34: Interfatarea aplicatiilor ASM cu SO
	Slide 35: Interfatarea aplicatiilor ASM cu SO
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: 3. UEFI – “Noul Bios” Unified Extensible Firmware Interface
	Slide 43: UEFI Unified Extensible Firmware Interface O noua tehnologie promite accelerarea pornirii PC-ului. La DOS - inainte ca SO sa dea vreun “semn de viata” va apare tot timpul un ecran cu logo-ul producatorului placii de baza.
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 54
	Slide 55
	Slide 56

