
Speaker Recognition in Natural Language Processing: A Comprehensive Overview

https://medium.com/the-modern-scientist/speaker-recognition-in-natural-language-
processing-a-comprehensive-overview-03c3138b5e52

Introduction

In the realm of Natural Language Processing (NLP), speaker recognition is a

critical subfield that focuses on identifying and verifying the identity of a speaker

based on their vocal characteristics. While NLP primarily deals with

understanding and processing text, the integration of speaker recognition

techniques broadens its scope and applicability. This essay delves into the concept

of speaker recognition in NLP, discussing its significance, methods, challenges,

and applications.

Speaker Recognition in Natural Language Processing: Unveiling the Voice of Identity.

Significance of Speaker Recognition in NLP

Speaker recognition is a powerful tool that enhances NLP systems in various

ways. Its significance can be understood through the following key points:

1. Security and Access Control: In today’s digital world, securing

access to sensitive information is a paramount concern. Speaker

recognition is commonly used in applications such as voice-activated

https://medium.com/the-modern-scientist/speaker-recognition-in-natural-language-processing-a-comprehensive-overview-03c3138b5e52
https://medium.com/the-modern-scientist/speaker-recognition-in-natural-language-processing-a-comprehensive-overview-03c3138b5e52

authentication systems, allowing users to access their accounts and

devices securely.

2. Personalized User Experiences: Many NLP applications benefit

from recognizing a user’s voice. For instance, voice assistants like Siri

and Alexa can personalize responses based on the speaker’s

preferences and previous interactions.

3. Forensic Analysis: Speaker recognition plays a pivotal role in

forensic analysis, aiding law enforcement agencies in identifying

criminals through intercepted voice communications.

4. Customer Service: In the customer service industry, recognizing

individual callers can lead to a more personalized and efficient service

experience. Automated call centers can use speaker recognition to

route calls to the most relevant agents.

Methods of Speaker Recognition

Speaker recognition can be broadly classified into two categories: speaker

identification and speaker verification.

1. Speaker Identification: This process involves determining the

identity of a speaker from a set of known speakers. It typically

employs techniques such as Gaussian Mixture Models (GMM),

Hidden Markov Models (HMM), and deep learning methods like

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs). These models analyze acoustic features, such as

Mel-frequency cepstral coefficients (MFCCs), to distinguish between

different speakers.

2. Speaker Verification: Speaker verification, on the other hand,

focuses on verifying whether a given voice sample matches a

particular speaker’s identity. This is commonly used in applications

requiring authentication, where the system compares the voice input

with a stored voiceprint.

Challenges in Speaker Recognition

Despite the potential of speaker recognition in NLP, it faces several challenges:

1. Variability in Voice: Speakers’ voices can vary significantly due to

factors such as emotional state, health, and environmental conditions.

Robust speaker recognition systems must account for these variations.

2. Data Privacy: The collection and storage of voice data for

recognition purposes raise concerns about privacy and data security.

Striking a balance between utility and user privacy is a complex

challenge.

3. Speaker Impersonation: Malicious actors can attempt to

impersonate legitimate speakers, making it essential for recognition

systems to be robust against such attacks.

4. Limited Data: Developing accurate speaker recognition models

requires substantial labeled data for training. This can be a limitation,

especially for less-represented languages and dialects.

Applications of Speaker Recognition in NLP

Speaker recognition in NLP has found its way into a wide range of applications,

including:

1. Voice Assistants: Popular voice assistants like Siri, Google

Assistant, and Amazon’s Alexa use speaker recognition to personalize

responses and identify different users in multi-user households.

2. Banking and Finance: Speaker recognition is used to secure phone

banking and access to financial services, adding an extra layer of

authentication.

3. Law Enforcement: In the realm of criminal investigations, speaker

recognition helps law enforcement agencies identify suspects through

voice analysis.

4. Healthcare: In telemedicine and healthcare, speaker recognition can

be used to authenticate doctors and patients for secure and

confidential communication.

Code

Creating a complete Python code for speaker recognition with plots is a complex

task that would require extensive libraries, data, and time. However, I can provide

you with a simplified example using a pre-trained model, libraries for audio

processing, and some basic plots.

In this example, we’ll use the pyAudioAnalysis library for feature extraction,

and scikit-learn for classification. Note that for a production-level speaker

recognition system, you would require a substantial amount of labeled audio data

and more sophisticated models.

Import necessary libraries

import pyaudio

import wave

import os

import numpy as np

import matplotlib.pyplot as plt

from pyAudioAnalysis import audioBasicIO

from pyAudioAnalysis import audioFeatureExtraction

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

from sklearn.preprocessing import StandardScaler

Define functions for audio feature extraction

def extract_features(file_path):

 [Fs, x] = audioBasicIO.read_audio_file(file_path)

 F, f_names = audioFeatureExtraction.short_term_feature_extraction(x, Fs, 0.050*Fs,

0.025*Fs)

 return F

Create a dataset of audio features (sample data)

dataset_path = "speaker_data"

speakers = ["speaker1", "speaker2"]

X = []

y = []

for speaker in speakers:

 speaker_folder = os.path.join(dataset_path, speaker)

 for audio_file in os.listdir(speaker_folder):

 if audio_file.endswith(".wav"):

 feature_vector = extract_features(os.path.join(speaker_folder, audio_file))

 X.append(feature_vector)

 y.append(speaker)

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Standardize features

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Train a classifier (Support Vector Machine)

clf = SVC()

clf.fit(X_train, y_train)

Predict and evaluate

y_pred = clf.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)

print(f"Accuracy: {accuracy*100:.2f}%")

Plot the results

unique_speakers = np.unique(speakers)

confusion_matrix = np.zeros((len(unique_speakers), len(unique_speakers))

for true, pred in zip(y_test, y_pred):

 confusion_matrix[np.where(unique_speakers == true), np.where(unique_speakers ==

pred)] += 1

plt.imshow(confusion_matrix, interpolation="nearest", cmap=plt.cm.Blues)

plt.title("Speaker Recognition Confusion Matrix")

plt.colorbar()

tick_marks = np.arange(len(unique_speakers))

plt.xticks(tick_marks, unique_speakers, rotation=45)

plt.yticks(tick_marks, unique_speakers)

plt.tight_layout()

plt.ylabel("True label")

plt.xlabel("Predicted label")

plt.show()

In this code:

1. We use pyAudioAnalysis for audio feature extraction, scikit-learn for

machine learning, and matplotlib for plotting.

2. The code assumes you have audio data in the “speaker_data” folder,

where subfolders contain audio files for different speakers.

3. Features are extracted from the audio files and used to train a Support

Vector Machine (SVM) classifier.

4. The accuracy of the classifier is calculated and a confusion matrix is

plotted.

Remember, this is a simplified example. In a real-world scenario, you would need a

more extensive dataset and possibly more complex models for robust speaker

recognition.

Conclusion

Speaker recognition in NLP is a dynamic and evolving field with diverse applications

and substantial potential. As technology continues to advance, the accuracy and

reliability of speaker recognition systems will improve, addressing many of the existing

challenges. The integration of speaker recognition techniques into NLP not only

enhances user experiences but also adds a layer of security and personalization, making

it a valuable asset in the modern digital landscape. However, it is imperative to address

privacy concerns and ethical considerations to ensure responsible and secure

implementation in the ever-expanding world of NLP applications.

Speaker Recognition: Unlocking the Power of Voice

https://medium.com/the-modern-scientist/speaker-recognition-unlocking-the-power-
of-voice-d59c40db5450

Introduction

In our ever-evolving world of technology, voice-based interactions have become increasingly

prevalent. From virtual assistants to voice-controlled devices, the ability to recognize and

authenticate individuals based on their unique vocal characteristics has gained significant

importance. Speaker recognition, a subfield of biometrics, offers a promising solution by

leveraging the distinct patterns present in an individual’s voice to identify and verify their

identity. This essay explores the fundamentals, applications, challenges, and advancements in

speaker recognition, shedding light on its growing significance in our modern society.

Understanding Speaker Recognition

Speaker recognition, also known as voice recognition or speaker identification, is the process of

identifying and verifying the identity of a speaker based on their unique vocal characteristics.

These characteristics encompass a wide range of factors, including pitch, accent, intonation,

speech patterns, and pronunciation nuances. By analyzing these distinct features,

sophisticated algorithms and models can determine the likelihood of a speaker’s identity,

comparing it with stored voice profiles in a database.

https://medium.com/the-modern-scientist/speaker-recognition-unlocking-the-power-of-voice-d59c40db5450
https://medium.com/the-modern-scientist/speaker-recognition-unlocking-the-power-of-voice-d59c40db5450

Applications of Speaker Recognition

1. Forensic Investigations: Speaker recognition plays a vital role in law

enforcement and forensic investigations. It enables the identification of

individuals based on recorded voice samples, aiding in the resolution of criminal

cases and providing crucial evidence in court proceedings.

2. Access Control and Security: Speaker recognition has found significant

application in access control systems, enhancing security measures in various

domains. Voice-based authentication can provide secure and convenient access

to restricted areas, devices, or accounts, replacing traditional methods such as

PINs or passwords.

3. Telecommunications and Customer Service: Speaker recognition

technology is employed in telecommunication systems to authenticate users

during phone-based transactions, ensuring secure and convenient interactions.

Additionally, it assists in providing personalized customer service experiences,

enabling automated systems to recognize and respond to individual callers.

4. Voice Assistants and Home Automation: Virtual assistants like Siri, Alexa,

and Google Assistant rely on speaker recognition to differentiate between

different users within a household. This allows for personalized responses,

tailored recommendations, and customized user experiences.

Challenges in Speaker Recognition

Despite the advancements in speaker recognition technology, several challenges persist, posing

limitations and room for improvement:

1. Variability in Voice Data: Factors such as background noise, microphone

quality, and emotional state can affect the quality and consistency of voice data,

making accurate recognition more challenging.

2. Impersonation and Spoofing: The vulnerability of speaker recognition

systems to impersonation and spoofing poses a significant challenge. Adversaries

may attempt to mimic or manipulate voice samples to gain unauthorized access

or deceive the system, necessitating robust anti-spoofing techniques.

3. Privacy and Ethical Considerations: The collection and storage of voice data

raises concerns regarding privacy, security, and ethical use. Striking a balance

between the convenience of voice-based authentication and safeguarding

individuals’ personal information is crucial.

Advancements in Speaker Recognition:

Researchers and technologists continue to make remarkable progress in the field of speaker

recognition. Recent advancements include:

1. Deep Learning and Neural Networks: The adoption of deep learning

techniques, particularly neural networks, has significantly improved the accuracy

and robustness of speaker recognition systems. Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs) have shown promising results in

voice feature extraction and modeling.

2. Multi-Modal Approaches: Integrating multiple modalities, such as speech

and visual cues, can enhance speaker recognition systems’ performance and

security. Combining audio analysis with lip movement, facial recognition, or

behavioral patterns provides a more comprehensive and reliable means of

speaker identification.

3. Anti-Spoofing Measures: Researchers are actively developing and refining

anti-spoofing techniques to counter fraudulent attempts to deceive speaker

recognition systems. These measures involve analyzing various aspects of voice

data, such as high-frequency components, acoustic properties, and temporal

characteristics, to detect spoofing attacks.

There are several techniques and approaches used in speaker recognition systems. Here are

some commonly employed techniques:

1. Feature Extraction: Feature extraction is a crucial step in speaker recognition,

where relevant information is extracted from speech signals to represent the

speaker’s characteristics. Some commonly used features include:

- Mel-Frequency Cepstral Coefficients (MFCCs): These coefficients

represent the spectral envelope of the speech signal, capturing information about

the shape of the vocal tract.

- Linear Predictive Coding (LPC): LPC analyzes the linear prediction error of

the speech signal, capturing information about the vocal tract resonances.

- Perceptual Linear Prediction (PLP): PLP combines aspects of MFCC and

LPC techniques, considering both the spectral and temporal characteristics of the

speech signal.

2. Speaker Modeling: Once the features are extracted, various modeling

techniques are employed to represent the speaker’s characteristics. Some

common modeling approaches include:

- Gaussian Mixture Models (GMMs): GMMs are probabilistic models that

represent the statistical distribution of speaker-specific feature vectors. They can

be trained to estimate the likelihood of a given feature vector belonging to a

particular speaker.

- Hidden Markov Models (HMMs): HMMs are widely used for speech and

speaker recognition. They model the temporal dynamics of speech and capture

the transitions between different speech sounds or speaker characteristics.

- Support Vector Machines (SVMs): SVMs are supervised machine learning

models that can be trained to classify speaker-specific feature vectors based on a

given training set.

- Deep Neural Networks (DNNs): DNNs, particularly Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), have shown

promising results in speaker recognition. They can learn complex representations

from raw audio data and capture both spectral and temporal information

effectively.

3. Enrollment and Verification: The speaker recognition process typically

involves two main steps: enrollment and verification.

- Enrollment: During enrollment, the system creates a speaker model or

template by training the chosen modeling technique on a set of known or labeled

speaker data. This template represents the unique characteristics of the speaker’s

voice.

- Verification: In the verification phase, the system compares a test sample to

the enrolled speaker models. The similarity or distance between the test sample

and each enrolled model is computed, and a decision is made based on a

predefined threshold to accept or reject the claimed speaker’s identity.

4. Anti-Spoofing Techniques: To mitigate the risk of spoofing attacks and

ensure the integrity of the speaker recognition system, various anti-spoofing

techniques are employed. These techniques aim to differentiate between genuine

speech and artificially generated or manipulated speech samples. Common anti-

spoofing methods include analyzing high-frequency components, detecting voice

activity, examining acoustic properties, and employing machine learning

algorithms to identify spoofed or manipulated samples.

It’s important to note that the choice of techniques and algorithms may vary depending on the

specific requirements, dataset availability, and the complexity of the speaker recognition task.

Researchers and practitioners continue to explore new techniques and combine multiple

approaches to improve the accuracy, robustness, and security of speaker recognition systems.

Speaker recognition has made significant progress over the years, but there are still several

open problems and challenges that researchers and technologists are actively addressing.

Some of the key open problems in speaker recognition include:

1. Robustness to Variability: Speaker recognition systems often struggle with

handling variability in speech, including different speaking styles, accents,

languages, and emotional states. Developing models and algorithms that can

effectively handle such variability and provide accurate recognition regardless of

these factors remains an open problem.

2. Speaker Diarization: Speaker diarization involves segmenting an audio

recording into individual speaker segments. It is a crucial step in speaker

recognition systems, especially in scenarios where multiple speakers are present.

Accurate and efficient diarization techniques that can handle overlapping speech,

background noise, and speaker turn-taking in real-world environments are areas

of active research.

3. Data Scarcity and Diversity: The availability of large and diverse speaker

datasets plays a vital role in training robust speaker recognition models.

However, acquiring such datasets can be challenging due to privacy concerns,

especially when dealing with sensitive voice data. Developing techniques to

overcome data scarcity while ensuring data privacy and diversity remains an

open problem.

4. Cross-lingual and Cross-domain Recognition: Many speaker recognition

systems are designed and trained on specific languages or domains, limiting their

effectiveness in cross-lingual or cross-domain scenarios. Developing techniques

that can generalize well across different languages, dialects, and domains is an

ongoing challenge in the field.

5. Vulnerability to Adversarial Attacks: Speaker recognition systems are

susceptible to adversarial attacks, where an adversary deliberately manipulates

the voice samples to deceive the system. Adversarial attacks can include

impersonation, voice synthesis, or modifying audio signals to alter the recognized

speaker’s identity. Developing robust anti-spoofing techniques and ensuring

system security against such attacks is a critical open problem.

6. Privacy and Ethical Considerations: As speaker recognition technology

becomes more prevalent, concerns around privacy and ethical use of voice data

are increasing. Designing systems that prioritize user privacy, obtain informed

consent, and implement secure data storage and handling mechanisms are

ongoing challenges to address.

7. Real-time and Resource-constrained Applications: Speaker recognition

systems are often required to operate in real-time or on resource-constrained

devices, such as smartphones or IoT devices. Ensuring efficient and accurate

speaker recognition in these scenarios, where computational resources and

processing power are limited, is an open problem.

Addressing these open problems in speaker recognition requires interdisciplinary research,

encompassing areas such as signal processing, machine learning, natural language processing,

and human-computer interaction. Continued collaboration and innovation in these fields will

contribute to the development of more robust, accurate, and secure speaker recognition

systems in the future.

Here’s an example of speaker recognition code in Python using the scikit-learn library and the

Gaussian Mixture Model (GMM) approach for modeling:

import numpy as np

from sklearn.mixture import GaussianMixture

Training data

Each row represents the feature vector of a speaker

train_data = np.array([

 [0.1, 0.2, 0.3, 0.4], # Speaker 1

 [0.2, 0.3, 0.4, 0.5], # Speaker 1

 [0.9, 0.8, 0.7, 0.6], # Speaker 2

 [0.8, 0.7, 0.6, 0.5] # Speaker 2

])

Create labels for the training data

train_labels = np.array([0, 0, 1, 1]) # 0 represents Speaker 1, 1 represents Speaker 2

Testing data

Each row represents the feature vector of a test sample

test_data = np.array([

 [0.3, 0.4, 0.5, 0.6], # Unknown speaker

 [0.7, 0.6, 0.5, 0.4] # Unknown speaker

])

Train the Gaussian Mixture Model (GMM) with the training data

gmm = GaussianMixture(n_components=2) # Number of components equals the number of

speakers

gmm.fit(train_data)

Predict the labels for the testing data

predicted_labels = gmm.predict(test_data)

Display the predicted labels

for label in predicted_labels:

 print("Predicted Speaker:", label)

In this example, we have two speakers represented by their respective feature

vectors in the train_data array. The corresponding labels are provided in

the train_labels array. We then create a GMM object with two components

(representing the two speakers) using GaussianMixture from scikit-learn. The

GMM is trained on the training data using the fit() method.

Next, we have some test samples represented by feature vectors in

the test_data array. We use the trained GMM model to predict the labels for these

test samples using the predict() method. The predicted labels are stored in

the predicted_labels array.

Finally, we display the predicted labels to identify the corresponding speakers.

Note: This is a simplified example for illustration purposes. In practice, you may

need to preprocess the audio data, extract appropriate features (such as MFCCs),

and handle larger datasets. Additionally, consider incorporating anti-spoofing

techniques and other enhancements for a more robust speaker recognition

system.

Conclusion

Speaker recognition has emerged as a powerful technology with a wide range of

applications in various sectors, including security, telecommunications, and

personalization. While significant progress has been made, there are still

challenges to overcome, such as variability in voice data and the potential for

spoofing. Nonetheless, ongoing advancements in deep learning, multi-modal

approaches, and anti-spoofing techniques offer promising solutions. As the field

continues to evolve, speaker recognition is poised to play an increasingly integral

role in our voice-driven future, enabling secure and personalized interactions with

technology.

Speaker Recognition

Model Building

https://medium.com/@makcedward/speaker-recognition-c133ed89ad7c

1. Collect a dataset of audio recordings: You will need a dataset of audio recordings of people

speaking to train your speaker recognition model. This dataset should include multiple

recordings of each speaker. You may use recordings from a variety of sources, such as

public datasets (e.g. VoxCeleb), private datasets, or a combination of both.

2. Extract features from the audio recordings: Once you have collected your audio recordings,

you need to extract features from them. Common features used for speaker recognition

include Mel-Frequency Cepstral Coefficients (MFCCs), Linear Predictive Coding (LPC)

coefficients, and other speech processing techniques.

3. Train a model on the extracted features: After extracting the features from the audio

recordings, you can use them to train a model for speaker recognition. Popular models for

speaker recognition include Hidden Markov Models (HMMs), and Deep Neural Networks

(DNNs).

4. Test the model: Once you have trained your model, you can test it on unseen audio

recordings to measure its performance via an equal error rate (EER). This can be done by

comparing the model’s predictions against the true speaker labels in the test dataset.

https://medium.com/@makcedward/speaker-recognition-c133ed89ad7c
https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

Speaker Recognition from Audio
https://medium.com/@makcedward/speaker-recognition-from-audio-956e24052af0

Photo by Priscilla Du Preez on Unsplash

In my previous work, I focused on text-based machine learning (ML) models such

as named entity recognition (NER), intention classification, and topic modeling. I

am preparing a new series of blogs that are acoustic-related topics. This is the first

post of this series, so I will try to illustrate the overall landscape of the acoustic

domain via one of the classific problems.

Data Variety

Photo by Luke Michael on Unsplash

Voice includes lots of variety even though people speak the same transcript. You

can distinguish two voices who speak from two different people. Even for the

same person, voices can be different when you have different emotions (e.g.,

happy, angry, sad, etc.).

Input Type

Photo by Marius Masalar on Unsplash

We may feed bytes, characters, or tokens into a text-based ML model. On the

other hand, we can feed waveform or spectrogram into an acoustic ML model. A

spectrogram is a visualization of representing the signal (i.e.,

voice) strength (i.e., loudness) of a signal over time at various frequencies.

Waveform Visualization

https://medium.com/@makcedward/speaker-recognition-from-audio-956e24052af0
https://unsplash.com/@priscilladupreez?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@lukemichael?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@marius?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://en.wikipedia.org/wiki/Spectrogram

In exploratory data analysis, it is not that hard to explore characters or tokens.

Unlike text, we can not visualize audio clips directly. Waveform and spectrogram

visualization is a good way to understand our data.

You may use audio-preview plugin (if you are using Visual Studio), native

software on your machine, or Jupyter Notebook (with librosa) to understand it.

Alternatively, we may use cloud solutions to achieve the same purpose. For

example, once uploading files to DagsHub, everyone with access is able to listen

and visualize it via browser.

Spectrogram Visualization

Lots of modern ML models consume spectrograms (or mel-spectrograms) instead

of waveforms for several reasons. Waveform includes more information but

spectrogram are closed to the human auditory system. Another reason is that we

can reuse computer vision model architecture on the acoustic models. I will show

how to use the computer vision (CV) architecture, ResNet [1], and speaker

recognition model later.

Speaker Recognition

https://marketplace.visualstudio.com/items?itemName=sukumo28.wav-preview
https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html
https://dagshub.com/makcedward/gender_classification/src/main/datastore/LibriSpeech/84/121123/84-121123-0000.flac

Photo by Kevin Ku on Unsplash

Our toy problem is speaker recognition. Given voice input, we want to identify the

speaker. It is similar to facial recognition and finger recognition when you try to

unlock your iPhone.

Both speaker verification and identification are under the speaker recognition

umbrella. Speaker identification refers to determining who the enrolled speaker

is. Speaker verification means either accepting or rejecting the identity claimed by

a speaker.

Dataset

Photo by Tobias Fischer on Unsplash

In the regression problem, we have the titanic dataset. In audio problems, I

usually start from the LibriSpeech dataset [2]. You may download it

from OpenSLR, PyTorch, TensorFlow, or HuggingFace.

Although we can download it from the internet easily, it is raw audio data (i.e.,

waveform). As mentioned in the previous section, we feed spectrogram data to

ML models instead of waveform data. You may convert waveform data to

spectrogram and persist in your local machine. It is fine if you work alone without

https://unsplash.com/@ikukevk?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://unsplash.com/@tofi?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://www.kaggle.com/c/titanic
https://www.openslr.org/12
https://pytorch.org/audio/stable/_modules/torchaudio/datasets/librispeech.html
https://www.tensorflow.org/datasets/catalog/librispeech
https://huggingface.co/datasets/librispeech_asr

any scale requirement. Another option is uploading it to a cloud provider (e.g.,

AWS, GCP), but you have to manage it by yourself.

Alternatively, you may consider using the Direct Data Access feature which is

provided by DagsHub. It helps us to streamline the process of uploading and

downloading from the cloud. We can focus on model training rather than

infrastructure.

The following codes show how to upload files to DagsHub’s cloud.

Initialize remote date repository

from dagshub.upload import Repo

repo = Repo(repo_owner, repo_name)

dataset_dir = 'datastore'

ds = repo.directory(dataset_dir)

Iterlate local audio file paths

for f in audio_file_paths:

 file_name = os.path.basename(f)

 _id, session, _ = file_name.split('-')

 remote_file_path = os.path.join(

 'LibriSpeech',

 _id,

 session,

 file_name

)

 # Upload file

 ds.add(file=f, path=remote_file_path)

Commit change on files upload

ds.commit(f"Upload {total_cnt} audio files", versioning="dvc")

We simply use the API from DagsHub to get back data. No major difference when

loading files locally.

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem()

import csv

metadata = {}

https://dagshub.com/docs/feature_guide/direct_data_access/
https://dagshub.com/

with fs.open('datastore/LibriSpeech/metadata.csv') as infile:

 reader = list(csv.reader(infile))

 for row in reader[1:]:

 metadata[row[0]] = len(metadata)

After talking about data storage, we will move to data processing. Converting

waveform to mel-spectrogram is a very typical process, and most of the models

consume it. Therefore, you may consider caching the processed result.

Data Processing

Photo by NEW DATA SERVICES on Unsplash

librosa [3] is a famous python package for music and audio analysis. It provides

an easy way to convert raw waveform data to mel-spectrogram data.

Load audio data

y, sr = librosa.load(file_path, sr=sample_rate)

Convert waveform to mel-spectogram

spec=librosa.feature.melspectrogram(y=f.numpy(), sr=sample_rate)

Convert a power spectrogram (amplitude squared) to decibel (dB) units

spec_db=librosa.power_to_db(spec)

Sample rate means the number of samples per second. For example, 16000 means

there are 16000 data points per second. Higher sample rates include more data

points. 16000, 22050, 44100, and 48000 are sample rates that I usually use.

When working on audio data, it will be good to have the same sample rate across

all data feeding into the ML model.

Passing sample_rate into librosa.load function, which helps to convert the audio

clip to the expected sample rate.

https://unsplash.com/@new_data_services?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://github.com/librosa/librosa
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://librosa.org/doc/main/generated/librosa.load.html

Modeling

Photo by Kelly Sikkema on Unsplash

I mentioned we could leverage CV model architecture on the acoustic model.

Simply load the ResNet34 model by using torchvision package, we have the pre-

trained model now.

from torchvision.models import resnet34

import torch.nn as nn

Load ResNet34 CV model

resnet_model = resnet34(weights=True)

Adjusted the last layer output for our binary classification use case

resnet_model.fc = nn.Linear(512, label_cnt)

Adjust the first convolution neural network (CNN) layer for our use case

resnet_model.conv1 = nn.Conv2d(

 1,

 64,

 kernel_size=(7, 7),

 stride=(2, 2),

 padding=(3, 3),

 bias=False

)

Tracking

Photo by Sandra Tan on Unsplash

Experiment tracking is very important when building a model. It allows us to

compare model metrics (performance, training time, etc) against different

settings. You can mark it down into a spreadsheet or use experiment tracking

tools. Weights & Biases, Comet ML, mlflow are some of the great tools that we can

use.

We do not need extra tools if we use DagsHub as you just need to run a few lines

of code (auto-tracking is available for some frameworks such as PyTorch Lighting)

to create the experiment tracking.

https://unsplash.com/@kellysikkema?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://pytorch.org/vision/stable/models.html
https://unsplash.com/@sandratansh?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://iterative.ai/why-iterative?utm_source=adwords&utm_medium=ppc&utm_campaign=G_SRCH_NOB_Competitors&utm_content=141070412790&utm_term=weights+and+biases&hsa_acc=9352334349&hsa_cam=17377655903&hsa_grp=141070412790&hsa_ad=601174904291&hsa_src=g&hsa_tgt=kwd-810013433974&hsa_kw=weights+and+biases&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQiAyMKbBhD1ARIsANs7rEEXVkzpTqzcMA8ePRNBTMdr8QErJpapIaSHmsMnc8ltwK_tkBSUjVEaAq2KEALw_wcB
https://www.comet.com/site/
https://mlflow.org/
https://dagshub.com/docs/feature_guide/git_tracking/
https://www.pytorchlightning.ai/

from dagshub import DAGsHubLogger

logger = DAGsHubLogger(

 metrics_path="logs/test_metrics.csv",

 hparams_path="logs/test_params.yml"

)

logger.log_hyperparams({

 'learning_rate':learning_rate,

 'optimizer': 'adam',

 'epoch': 3,

 'loss': 'ce'

})

accuracy = evaluate(model, x, y_true)

logger.log_metrics({'accuracy': accuracy})

Model Registry

Photo by Wedding Dreamz on Unsplash

Besides metrics, we also want to keep the trained model, as we may need to load it

later. Model Registry is another important section that we need to take care of. We

can simply save the model locally or upload it to the cloud (e.g., AWS, Azure,

GCP). However, management is needed but not just storing the file. For example,

the association between the experiment and the model is needed. Model access

control is suggested as we may only want to share our model with the targeted

group of people but not all.

Same to the dataset, we can upload the model to DagsHub so that we have a single

view to access the code, experiment, and model.

from dagshub.upload import Repo

repo = Repo(REPO_OWNER, REPO_NAME)

dataset_dir = 'model'

ds = repo.directory(dataset_dir)

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem()

https://unsplash.com/@wedding_dreamz?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral

ds.add(file='trained_model.pt', path='trained_model.pt')

ds.commit(f"Upload model", versioning="dvc")

Take Away

Having a centralized place to keep tracking code, experiment, and model helps us to focus on the

model rather than MLOps. A model builder is an expert in training a good model for the company but

may not be good at building MLOps infrastructure.

Here is the full script for the model training. To balance the optimization and readability, we simplify

the flow such as data streaming, data processing, and modeling. There are a few things that we can

further optimize the data processing part. Instead of streamlining data at the very beginning, we

should load data on demand to maximize the Direct Data Access feature. Also, we may introduce data

augmentation if a more generalized model is needed. To maximize DagsHub Storage feature, we can

preprocess (i.e. convert waveform to spectrogram) data and upload it instead of processing data every

time.

Here is the repo for the datastore, experiment tracking, and model registry. You may access it to

understand how we can combine everything together.

Like to learn?

I am Data Scientist in Bay Area. Focusing on the state-of-the-art in Data Science, Artificial Intelligence,

especially in NLP and platform related. Feel free to connect with me on LinkedIn or Github.

Reference

[1] He et al. (2015). Deep Residual Learning for Image Recognition

[2] Panayotov et al. (2015). LibriSpeech: An ASR corpus based on public domain audio books

[3] McFee et al. (2015). librosa: Audio and Music Signal Analysis in Python

https://colab.research.google.com/drive/1E_kP1MwK0p64KpCXu9u5Ai1fZ-s26DNp#scrollTo=W4IfT-ECFosC
https://dagshub.com/docs/feature_guide/direct_data_access/
https://github.com/makcedward/nlpaug
https://github.com/makcedward/nlpaug
https://dagshub.com/docs/feature_guide/dagshub_storage/
https://dagshub.com/makcedward/gender_classification
https://makcedward.github.io/
https://www.linkedin.com/in/edwardma1026
https://github.com/makcedward
https://arxiv.org/pdf/1512.03385.pdf
http://www.danielpovey.com/files/2015_icassp_librispeech.pdf
https://conference.scipy.org/proceedings/scipy2015/pdfs/brian_mcfee.pdf

Automatic Speaker Recognition using Transfer Learning

https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-

6fab63e34e74

When tasked with the challenge of creating a dynamic voice identifier, naturally the tool of choice

for our team would be an image classifier

Even with today’s frequent technological breakthroughs in speech-interactive devices (think Siri and

Alexa), few companies have tried their hand at enabling multi-user profiles. Google Home has been the

most ambitious in this area, allowing up to six user profiles. The recent boom of this technology is what

made the potential for this project very exciting to our team. We also wanted to engage in a project that

is still a hot topic in deep-learning research, create interesting tools, learn more about neural network

architectures, and make original contributions where possible.

We sought to create a system able to quickly add user profiles and accurately identify their voices with

very little training data, a few sentences as most! This learning from one to only a few samples is

known as One Shot Learning. This article will outline the phases of our project in detail.

I. Project Summary

Goal: Classify speakers with minimal training such that only a few words or sentences are needed to

achieve high levels of accuracy.

Data: Training data was scraped from Librivox, a source of open domain audiobooks. Testing data

was either scraped off YouTube or collected live.

Method: In summary, we converted all of our audio data to spectrogram form. We then trained a

CNN derived from Cifar-10 on many speakers as a feature extractor to feed into an SVM for final

https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-6fab63e34e74
https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-6fab63e34e74
https://en.wikipedia.org/wiki/One-shot_learning

classification. This approach is known as transfer learning. This approach enabled us to reap the small

sample high performance of SVM and feature learning of CNNs.

Applications: The potential applications for our proposed systems are plentiful. They range from

home assistant needs (think Alexa and Google Home) to biometric security, marketing tools, and even

spying (identifying high profile targets). It could also be used as a tool for speaker diarisation in speech

data collection. Given some small previous exposure to included voices, an audio file with multiple

speakers could be accurately separated. This opens the door for a lot a more potential “clean data” to

be used to create more sophisticated speech-specific models.

Performance: Results were largely positive. With 20–35 seconds of training audio, our model was

able to distinguish between three speakers of with 63–95% accuracy in our tests. However,

performance drops severely with 5+ speakers or in uniform gender test groups.

Github Link: https://github.com/hamzag95/voice-classification

II. Data Collection

Background

One of the greatest challenges in the field of speaker and speech recognition is the lack of open source

data. Most speech data is either proprietary, hard to access, insufficiently labeled, insufficient in

amount per speaker, or noisy. In many related research papers, insufficient data has been cited as

reasoning for not pursuing further, more complex, models and applications.

We saw this is an opportunity to make a novel contribution to research in this field. Many hours of

googling later, our team concluded the best sources of potential audio for our project would

be LibriVox, an extensive source of open domain audiobooks, and YouTube. These sources were

selected upon best satisfying our criteria shown below.

http://ruder.io/transfer-learning/
https://en.wikipedia.org/wiki/Speaker_diarisation
https://github.com/hamzag95/voice-classification
https://librivox.org/search?primary_key=0&search_category=author&search_page=1&search_form=get_results
https://www.youtube.com/

Audio Source Criteria

• Enough unique speakers for a model to learn generalizable differences in speech

• Male and Female speakers, preferably in a range of languages

• At least 1 hour of audio per speaker available

• Audio can be automatically labeled with meta-data

• Audio has minimal noise (little background noise/music, decent quality, few extraneous

sounds)

• Open Domain or Creative Commons License for legal use and data set usage

Scraping Audio from Librivox

We wrote scripts using BeautifulSoup and Selenium to parse the website LibriVox and download the

audio books we wanted. BeautifulSoup by itself was not enough, as parts of the website took time (1–2

seconds) to load. Thus we used selenium to wait until certain elements on the webpage appeared and

became scrapable.

Our first attempt used a script that moves starts at LibriVox’s default home page and downloads all the

audio in the page within a certain size file size boundaries. We later realized this was flawed as many

audiobooks are actually a collaboration of multiple narrators that would be difficult to automatically

separate. Thus we had to find a way to get audiobooks with unique speakers. Unfortunately, the

LibriVox API didn’t contain a field to filter by project type (solo or collaboration) or narrator name.

Instead, we used advanced search to include only “solo” narrator books. Soon we realized it was

problematic to assume each book had a unique speaker as LibriVox has many repeat narrators. To fix

this, we had to read the meta-data of each book to maintain a list of scraped narrators to ensure our

data was correctly labeled. In the end, we had 6000+ unique speakers and links to 24000+ hours of

audio. However, due to time constraints, we sampled 162 unique speakers for spectrogram conversion.

The full list of download links can be found on our project GitHub here.

Scraping Audio from Youtube

From Youtube, we scraped video links from 7 Youtube stars and their tutorial/informative videos. We

found that tutorials tended to best fit our standards as they contain mostly clean speech. Selenium was

needed to automate the process as scraping YouTube requires scrolling. This process can be seen in

real-time in the video below.
Scraping videos on Youtube using Selenium

We didn’t scrape more profiles because it was inefficient to manually filter and verify videos based on

their inclusion of guest speakers, music, etc…Although tutorial channels generally fit the bill as far as

speech cleanliness, they were heavily skewed in gender toward males. Videos would also have varying

qualities of audio and background noise. We decided against using what we collected to train the

neural net, but thought they would be useful for testing purposes. YouTube remains a source of audio

with a lot of potential for data collection but very demanding in terms of dating verification and

cleaning.

https://github.com/hamzag95/voice-classification/blob/master/data_collection/download_links.txt

III. Data Processing

Background

Ultimately, all collected audio had to be converted to 503x800(x3) spectrogram images that captured 5

seconds of audio. The steps for converting the data collected from Librivox and YouTube were slightly

different as a result of differing download formats.

For our various processing needs, we were very fortunate to have tools such as ffmpeg, sox,

and mp3splt at our disposal that sped up the process while minimizing loss of audio quality.

YoutTube Audio Processing

Once the YouTube video links were collected, we were fortunate to find the YouTube-DL library which

allowed us to easily download our desired videos in WAV format. When attempting to convert this data

to spectrograms, we came to find that each file was producing two spectrograms because it was stereo

audio. This is the major difference we encountered versus processing of LibriVox audio.

Thus, the process can be summarized in the points below:

1. Manually check scraped YouTube Links to verify usability.

2. Download in all verified links in WAV format and automatically label/sort audio

https://www.ffmpeg.org/
https://github.com/chirlu/sox
http://mp3splt.sourceforge.net/mp3splt_page/home.php
https://github.com/rg3/youtube-dl

3. Split mono WAV files into 5 seconds segments

4. Convert all stereo WAV files to mono WAV

5. Convert all audio segments to Spectrograms

YouTube data processing phases.

A video of the YouTube audio processing can be seen below:

LibriVox Audio Processing

We processed the LibriVox audio using a single script that placed the data in various levels of

processing into different directories so that potential future users could change the segments lengths

or conversion types as they please.

The processing can be summarized in the points below:

1. Combine all downloaded chapters for a single speaker

2. Trim combined audio to desired length

3. Convert trimmed audio to 16bit 16khz mono WAV using ffmpeg

4. Remove silences longer than .5 seconds

5. Split WAV file in 5 second segments

6. Convert each segment to a spectrogram

https://github.com/hamzag95/voice-classification/blob/master/data_collection/AudioBook_DataProcessing.ipynb

LibriVox data processing stages

IV. Learning

Our Model

We create a CNN by modifying an existing Cifar-10 architecture and train it on spectrograms from 57

unique speakers. Using this trained neural network, we extract features by removing the last fully

connected layer and feeding outputs of the flatten layer into an SVM in a process known as transfer

learning. There was no publicly available pre-trained model for voice classification so we create and

train our own neural network.

CNN Architecture

The green layers in our architecture are convolutional layers whereas the blue layers max pooling. For

all convolutional layers we use a 3x3 kernel. For the max pooling we use a pool size of 2x2. We use relu

activation functions between each layer and a softmax activation function for the last layer. Our loss

function is categorical cross-entropy.

https://github.com/hamzag95/keras/blob/master/examples/cifar10_cnn.py

Modified Cifar-10 Architecture

CNN Training

When trained on 6 different people, the neural network is 97% accurate. Each of the 6 people had

about an hour of audio that the CNN was trained on. After our data scraping and processing is done for

a larger dataset of 162 different speakers, we trained our neural network on 57 different speakers due

to time constraints on training and storage space on AWS. We trained each of the 57 speakers on 45

min worth of audio (~2700 seconds). After one epoch our CNN is 97% accurate. The CNN took about

an and hour and a half to train on ~24000 spectrogram images.

SVM and Transfer Learning

We now have have a decent neural network at identifying 57 different people. We cut off the last layer

which is a dense layer classifying 57 people, and use the flatten layer to feed into an SVM. SVMs are

supposed to perform well with smaller amounts of data (compared to a neural network) and with high

dimensions. Using our CNN as a feature extractor we have data in ~400,000 dimensions. We use a

radial basis function as the kernel for the SVM.

Using 35 seconds of audio for training on 3 different speakers and testing on 35 seconds results in 95%

accuracy. Feeding into the SVM we see that with 15 seconds training for each of 3 different speakers

and testing on 15 seconds for each speaker, our SVM results in an accuracy of 83%. We see that we are

able to learn someone’s voice in 15–20 seconds now as opposed to 45 minutes of audio.

More Examples and Results

All our examples will try to differentiate between three new voices.

When we first tested the SVM we tested it on three YouTubers with 7 samples for each the training and

test set. We had an accuracy of 95%.

The indices correspond to a specific person. The array in this example is set up such;

[Christen Dominique, Tushar, Sriraj Raval]

An output of 0 is Christen (Female) , 1 is Tushar (Male) and 2 is Sriraj (Male).

https://www.youtube.com/user/christendominique
https://www.youtube.com/user/tusharroy2525
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

We see here that the model never misclassifies Christen, but classified Sriraj as Tushar for one sample.

For future testing we tried to minimize number of samples for training to about 5 samples. The

number of times the a person name occurs in the array is how many samples there were for the test set.

For testing our program we made an interface where we record speakers and create a test and train set.

We use this program to run live demos and test on real people, not just scraped data.

Additionally our classifier is language agnostic; it can recognize your voice independent of language.

The order a name appears in the array is the index the classifier predicts as the person speaking. The

first array seen is the prediction and the second array is the true speaker.

Below are the results of a few live tests of our model.

When doing the live demo in our class, learning three people’s voices, two males and one female, we

reached 63% accuracy. This was based on 5 samples for training and 3 samples for testing. Below is an

example of the in class demo we did. (0 → caramanis, 1 → dimakis, 2 → monica)

In class live demo with our professors and teaching assistant with some mixed language

Another example consisted of two males and one female voice, where all switched between english and

a respective different foreign language (Spanish, Arabic and Urdu). Our model was 90% accurate.

Demo among friends mixing english and their native languages

Here is another example with 86% accuracy.

Demo among friends in purely english

Results were generally positive! Testing on groups of 3 with differing genders generally yields accuracy

of 60–90%. However, our model does have limitations. Performance declines when tested on groups of

entirely the same gender or as group size increases. Testing of groups of uniform genders generally

yields accuracy of 40–60%. Accuracy nears that of a random guess as group size surpasses 6.

V. Conclusion

Summary

We wanted to create a model to identify speakers with only a few sentences of training data. We chose

to approach this by using existing image classifying architectures, representing audio using

spectrograms. This included a significant data collection component, leading us to create a dataset of

162 speakers included segmented audio files and segmented spectrograms. We chose to use take a

transfer learning approach, training a derivative of the Cifar-10 CNN, and extracting features to feed an

SVM to classify new speakers. We restricted our training data to 20–35 seconds per person (4–7

samples). This method brought surprising levels of accuracy (60–90%) for groups of 3 with differing

genders. Results were less impressive for uniformly gendered groups, but consistently much better

than random guesses.

Contributions

Following the goals we set upon starting this project, our team successfully managed to make original

contributions to this area of research. We managed to create an extremely large set of audio download

links for unique speakers in a field where lack of open source data is a common hurdle to research

projects. Again, this list of links can be found here. Additionally, our approach of using image

recognition in conjunction with transfer learning with an SVM for audio data has not been heavily

explored. It is our hope that our architecture and methods may be useful to future research.

Note: Link to full data set including audio and spectrograms coming soon…

https://github.com/hamzag95/voice-classification/blob/master/data_collection/download_links.txt

Future Changes/Improvements

A lot of roadblocks for this project consisted of time and computer resources such as storage and

computing power. Below are possible future steps for our team or someone else wanting to improve

what we have worked on

First would be access to more storage so we can train our neural network on 4 hours of audio per

person and use all 162 speakers we scraped. We believe that this will make for an even better feature

extractor to feed into the SVM.

Second, do some feature selection before feeding the features into the SVM. Even though SVMs with

nonlinear kernels are resistant to over-fitting, having so many features with so few samples may have

resulted in over-fitting, which may explain the high variance in accuracy scores. With more time, we

would have done more experimentation with the architecture of the neural network, specifically adding

another dense layer before the classification layer. This would reduce the input to the SVM from

~400,000 features to whatever we set as the number of nodes in the new dense layer. Another

architecture to explore would be basing a model on VGG19.

Third, would be to scrape more speakers. We are able to scrape 6000+ unique speakers from LibriVox,

although this takes time to download and preprocess data and a ridiculous amount of storage. We

would try to scrape about 500–1000 and use about 30–45 min. of audio per person to see how this

improves our feature extractor. This would take a lot of time to train. For reference 57 speakers with 45

min. of audio took an hour and a half to train.

https://medium.com/hackernoon/hello-from-the-mobile-side-tensorflow-lite-in-speaker-recognition-7519b18c2646

 “Hello,” from the Mobile Side: TensorFlow Lite in Speaker Recognition

The Alibaba tech team explored a new approach to voice recognition on mobile,

addressing main challenges in this field

Voice biometrics, or voiceprints, are already used by banks such

as Barclays and HSBC to verify customer identity. As the technology improves, it

will likely find further applications within banking and security. Speaker

recognition may also find applications within surveillance criminal investigations.

Despite this potential of the technology, there are still many challenges to

overcome in the field. Currently most speaker recognition takes place on the

server side. The Alibaba tech team proposes a solution using TensorFlow Lite on

the client side, to address many of the common issues with the current model

through machine learning and other optimization measures.

Issues with a Server-side Model:

With most speaker recognition currently taking place on the server side, the

following issues are all too common:

· Poor network connectivity

· Extended latency

https://medium.com/hackernoon/hello-from-the-mobile-side-tensorflow-lite-in-speaker-recognition-7519b18c2646
https://www.telegraph.co.uk/technology/news/10044493/Say-goodbye-to-the-pin-voice-recognition-takes-over-at-Barclays-Wealth.html
https://www.theguardian.com/business/2016/feb/19/hsbc-rolls-out-voice-touch-id-security-bank-customers

· Poor user experience

· Over-extended server resources

Alibaba’s Client-side Alternative:

To address these issues, the Alibaba tech team decided to implement speaker

recognition on the client side, and to use machine learning to optimize speaker

recognition.

This solution came with its own fair share of challenges. Implementing speaker

recognition on the client side is time-consuming, and multiple optimizations are

needed in order to offset this. The Alibaba tech team devised ways to:

· Optimize results with machine learning

· Accelerate computation

· Reduce time-consuming operations

· Reduce preprocessing time

· Filter out non-essential audio samples

· Remove unnecessary computing operations

The methods proposed by the Alibaba tech team make up a set of solutions which

can help to address the challenges encountered by speaker recognition

technology.

Defining Speaker Recognition

Scenarios

Voice recognition can be usefully applied in many scenarios, including:

1) Media quality analysis: recognize human voices, silence in call, and

background noises.

2) Speaker recognition: verify a voice for phone voice unlock, remote voice

identification, etc.

3) Mood recognition: identify the speakers mood and emotional state. When

combined with a person’s voiceprint, the content of what is being said, mood

recognition can add to security and prevent voiceprint counterfeiting and

imitation.

4) Gender recognition: distinguish whether a speaker is male or female. This is

another tool which can be useful to help confirm speaker identity.

Process

Training and prediction are the two main stages of speaker recognition. The

training stage sets up a compute model with the old data, and the prediction gives

the reference result on current data with the model..

Training can be further divided into three steps:

1) Extract audio features with Mel-frequency cepstrum algorithm.

2) Mark human voices as positive and non-human samples as negative. Train the

neural network model with these samples.

3) Use the final training results to create the prediction model for mobile.

In short, the training flow is feature extracting, model training and mobile model

porting. For prediction, the flow is extract the voice feature, run the mobile model

with the feature, and get the final predict result.

Artificial Intelligence Framework

The launch of TensorFlow Lite was announced at the Google I/O annual

developer conference in November 2017. TensorFlow Lite is a lightweight solution

for mobile and embedded devices, and supports running on multiple platforms,

from rackmount servers to small IoT devices.

With the widespread use of machine learning models, there has been a demand to

deploy TensorFlow Lite on mobile and embedded devices. Fortunately,

TensorFlow Lite allows machine learning models to run on devices with low

latency inference.

Tensorflow Lite is an AI learning system from Google. Its name derives from its

operating principles. Tensor means N-dimensional array, flow implies calculation

based on data flow graphs. TensorFlow refers to the calculation process of tensor

flowing from one end of the data flow graph to the other. TensorFlow is a system

that transmits complex data structures to AI neural networks for analysis and

processing.

The following figure shows the TensorFlow Lite data structure :

TensorFlow Lite architecture diagram

Mel-Frequency Cepstrum Algorithm

Algorithm introduction

For this solution, the Alibaba tech team uses the Mel-frequency cepstrum

algorithm. The algorithm is used for speaker recognition. Using the algorithm

contains the following steps:

1) Input sound files and resolve them to original sound data (time domain signal).

2) Convert time domain signals to frequency domain signals through short-time

Fourier transform, windowing and framing.

3) Turn frequency into a linear relationship that humans can perceive through

Mel spectrum transform.

4) Separate the DC component from the sine component by adopting DCT

Transform through Mel cepstrum analysis.

5) Extract sound spectrum feature vectors and convert them to images.

The purpose of windowing and framing is to ensure the short-term stationary

character of the speech in the time domain. Mel spectrum transform is used to

translate human auditory perception of frequency into a linear relationship. Mel

cepstrum analysis is used to understand Fourier transform, through which, any

signal can be decomposed into the sum of a DC component and a number of sine

signals.

The Mel-frequency cepstrum algorithm implementation process

Short-time Fourier transform

Time domain sound signals

Frequency domain sound signals

The sound signal is a one-dimensional time domain signal. It is difficult to find

the rule of how the frequency changes. If we convert the sound signal to frequency

domain via Fourier transform, it will show the signal frequency distribution. But

at the same time, its time domain information will be missing, making it

impossible to see the change of frequency distribution over time. Many joint time-

frequency analysis methods have emerged to solve this problem. Short-time

Fourier transform, wavelet, and Wigner distribution are all frequently-used

methods.

FFT transform and STFT transform.

The signal spectrum can be obtained via Fourier transform and can be widely

utilized. For example, signal compression and noise reduction can both be based

on the spectrum. However, Fourier transform is built upon an assumption that

the signal is stationary, that is, that the statistical properties of the signal do not

change over time. However, the sound signal is not stationary. Over a long period

of time, there are many signals that will appear and then disappear immediately.

If all the signals are Fourier transformed, the change of sound over time cannot be

reflected accurately.

The short-time Fourier transform (STFT) used in this article is the classic joint

time-frequency analysis method. Short-time Fourier transform (STFT) is a

mathematical transformation associated with the Fourier transform (FT) to

determine the frequency and phase of a sine wave in a local region of the time-

varying signal.

The concept of short-time Fourier transform (STFT) is to first choose a window

function with time-frequency localization, then assume that the analysis window

function h (t) was stationary over a short time, which ensures f (t) h (t) is a

stationary signal within different finite time widths. Finally, calculate the power

spectrum at various moments. STFT uses fixed window functions, the most

commonly used of which include the Hanning window, the Hamming window,

and the Blackman-Haris window. The Hamming window, a generalized cosine

window, is used in the solutions in this article. The Hamming window can

efficiently reflect the attenuation relationship between energy and time at a

certain moment.

The STFT formula in this article takes the original Fourier transform formula,

and adds a window function to it, creating the following updated STFT formula:

The following is a Hamming window function:

STFT transform based on the Hamming window

Mel Spectrum

Spectograms are usually in the form of a large map. In order to turn the sound

features into a suitable size, they often need to be transformed into Mel spectrum

via Mel scale filter bank.

Mel scale

The Mel scale was named by Stevens, Volkmann, and Newman in 1937. It is

known that the unit of frequency is Hertz (Hz) and the frequency range of human

hearing is 20–20000 Hz.

But human auditory perception does not relate to scale units such as Hz in a

linear manner. For example, if we have adapted to a 1000Hz tone, then when tone

frequency is increased to 2000Hz, our ears could only perceive that the frequency

may be increased by a little, and we would never realize that the frequency had

doubled. The mapping for converting an ordinary frequency scale to Mel-

frequency scale is as follows:

The above formula changes the frequency so that it has a linear relationship with

human auditory perception. That is to say, if one Mel scale frequency is the double

of another Mel scale frequency, human ears could perceive that one frequency is

roughly the double of the other.

Since there is a log relationship between Hz and Mel frequency, if the frequency is

low, Mel-frequency will change rapidly with Hz; if the frequency is high, Mel-

frequency will change slowly. This shows that human ears are sensitive to low

frequency sounds and less responsive to high frequency sounds. This rule forms

an important basis for the Mel scale filter bank.

Frequency transforms to Mel frequency

The figure below shows 12 triangular filters forming a filter group. This filter

group features dense filters and high threshold in the low frequency zone, as well

as sparse filters and low threshold in the high frequency zone. This aligns well

with the fact that human ears are less responsive to sounds of higher frequency.

Mel-filter banks with same bank area, a form of filters shown in the figure above,

are widely used in fields such as speech and speaker recognition.

Mel filter bank

Mel-Frequency Cepstrum

The result of applying DCT transformation to the Mel log spectrum to separate

components of DC signal and sine signals is the Mel-frequency cepstrum (MFC).

Optimizing algorithm processing speed

Since the algorithm is designed to be used on the client side, fast processing is

required. The following steps can be taken to optimize algorithm processing

speed.

1) Instruction set acceleration: The algorithm features many matrix addition

and matrix multiplication operations. The ARM instruction set is introduced to

accelerate operations. It can increase the speed by 4–8 times.

2) Algorithm acceleration:

a) Select vocal frequency range (20HZ~20KHZ) and filter out input outside the

non-vocal frequency range to reduce redundant computation.

b) Lower the audio sampling rate to reduce unnecessary data computation. This

is possible because human ears are insensitive to sampling rates that are too

high.

c) Cut windows and sections reasonably to avoid excessive computation.

d) Detect silent sections so that unnecessary sections can be deleted.

3) Sampling frequency acceleration: If radio sampling frequency is too high,

choose down sampling and set the highest sampling frequency to 32 kHz.

4) Multi-thread acceleration: Divides audios into multiple fragments

concurrently processed by multi-threads. The number of threads depends on the

machine capacity. The default setting is four threads.

Algorithm parameters selected by the engineering team

Speaker Recognition Models

Model selection.

Convolutional Neural Networks (CNN) are a type of feedforward neural network.

CNN networks contain artificial neurons that can respond to some of the neurons

in their field. This type of neural network is highly suitable for processing large

images.

In the 1960s, while studying neurons in the cerebral cortices of cats that aid in

local sensing and direction selection, Hubel and Wiesel found unique cellular

structures that could be used to simplify feedback neural networks. This led them

to propose the CNN concept. CNNs have become a hot spot in many research

fields, particularly in modal classification.

CNNs owe part of their popularity to their ability to skip complex pre-processing

of images and allow direct import of original images. The first CNN-like network

was the neocognitron proposed by K.Fukushima in 1980. Since then, multiple

researchers have worked to improve the CNN model. Among the most significant

of these efforts has been the work on improved cognition proposed by Alexander

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf

and Taylor. This research on improved cognition combines the strengths of

various approaches and avoids time-consuming error back propagation.

In general, CNN structure is made up of two fundamental layers. One of these

layers is the feature extraction layer. In this layer, each neuron’s input is

connected to the local accepted domain of the previous layer and extracts the

features of this local domain. Once extracted, the positional relation of this local

domain feature to other features is fixed.

The other is the feature mapping layers which gather to form every computing

layer of the network. Each feature mapping layer is a surface in which all neurons

have the same weight. Using functions with small influence function kernels, such

as sigmoid and relu as the activation function of CNN, the feature mapping

structure ensures constant displacement of feature mapping. The number of free

network parameters is reduced, since neurons on the same mapping surface share

the same weight. In CNN, every convolutional layer is closely followed by a

computing layer that is used to obtain local averages and secondary extraction.

This specific secondary feature extraction reduces feature resolution.

CNN is used mainly to recognize 2D images that are modified but not deformed,

such as images which have been zoomed in on. Since CNN’s feature detection

layer learns implicitly through training data, using CNN can avoid the need for

explicit feature extraction.

CNN can also learn concurrently, as it places the same weight for neurons across

the same feature mapping surface. This gives CNN another big advantage over

networks in which neurons are inter-connected. Local weight sharing gives CNN a

unique advantage in speech recognition and image processing. In terms of layout,

CNN is closer to actual biological neural networks. Weight sharing ensures a less

complex network and CNN does not have to handle the complexity of data

reconstruction during feature extraction and classification, since images of multi-

dimensional input vectors can be directly imported into the network.

Inception-v3 model

The accurate Inception-v3 model is used in this article as the speaker recognition

model. Decomposition is one of the most important improvements of the v3

model. 7x7 CNNs are decomposed into 2 one-dimensional convolutions (1x7, 7x1),

and 3x3 CNNs are also decomposed into two convolutions (1x3,3x1). This

accelerates computation, further deepens the network, and makes it more non-

linear. The v3 model network input is upgraded from 224x224 to 299x299, and

the design of the modules 35x35/17x17/8x8 are improved.

Using a TensorFlow session enables modules to realize training and prediction at

the code layer. The TensorFlow official website provides details of how to use a

TensorFlow session.

Using a TensorFlow session

Model example.

In monitored machine learning, samples are typically divided into three sets:

· The train set: This set is used to estimate models. It learns the sample data sets

and builds a classifier by matching some parameters. It creates a classification

manner used to train models.

· The validation set: This set is used to determine the network structure or

control parameters that control model complexity. It adjusts the classifier

parameters of models obtained through learning, such as choosing to hide the

number of units in neural networks. The validation set is also used to determine

the network structure or parameters that control the complexity of models, in an

attempt to avoid overfitting of models.

· The test set: This set is used to check how the finally selected optimal model

performs. It is mainly used to test the recognition capacity (such as the

recognition rate) of trained models.

The Mel Frequency Cepstrum algorithm described in the second chapter can be

used to obtain speaker recognition as sample files. Sounds within the human vocal

spectrum as positive samples, animal sounds and other non-human noises are

used as negative samples. These samples are then used to train the Inception-v3

model.

With TensorFlow as the training frame, this article takes 5000 human vocal

samples and 5000 non-human vocal samples as the test sets, and 1000 samples as

the validation set.

Model training.

Once samples are ready, they can be used to train the Inception-v3 model. The

convergence of the trained model can generate the pb model usable on the client.

In model selection, choose compiling armeabi-v7a or a later version, and NEON

optimization is enabled by default. In other words, opening the macro of

USE_NEON can accelerate instruction sets. More than half of the operations in a

CNN take place at convolutions, so instruction set optimization can speed up

operations by at least four times.

Convolution processing function

The toco tool provided by TensorFlow can then be used to generate a lite model

which can be directly called by the TensorFlow Lite frame on the client.

Toco calling interface.

Model prediction.

MFC can be used to extract vocal sound file features and generate prediction

images. Using the lite prediction model generated in training produces the

following results:

Model prediction result

Conclusion
The methods proposed above can help to address some of the most difficult
challenges in the speaker recognition field today. Using TensorFlow Lite on the
client side is a useful innovation that helps leverage machine learning and
learning and neural networks to drive the technology forward to further progress.

(Original article by Chen Yongxin陈永新)

References:

[1] https://www.tensorflow.org/mobile/tflite

[2] 基于MFCC与IMFCC的说话人识别研究[D]. 刘丽岩. 哈尔滨工程大学 . 2008

[3] 一种基于MFCC和LPCC的文本相关说话人识别方法[J]. 于明,袁玉倩,董浩,王哲. 计算机应用. 2006(04)

[4] Text dependent Speaker Identification in Noisy Enviroment[C]. Kumar Pawan,Jakhanwal Nitika,

Chandra Mahesh. International Conference on Devices and Communications . 2011

[5] https://github.com/weedwind/MFCC

[6] https://baike.baidu.com/item/ARM指令集/907786?fr=aladdin

[7] https://www.tensorflow.org/api_docs/python/tf/Session

Alibaba Tech

First hand, detailed, and in-depth information about Alibaba’s latest technology → Facebook: “Alibaba Tech”.
Twitter: “AlibabaTech”

https://www.tensorflow.org/mobile/tflite
http://kns.cnki.net/kcms/detail/detail.aspx?filename=2009059683.nh&dbcode=CMFD&dbname=CMFD2010&v=
http://kns.cnki.net/kcms/detail/detail.aspx?filename=JSJY200604040&dbcode=CJFQ&dbname=cjfd2006&v=
https://github.com/weedwind/MFCC
https://baike.baidu.com/item/ARM%E6%8C%87%E4%BB%A4%E9%9B%86/907786?fr=aladdin
https://www.tensorflow.org/api_docs/python/tf/Session
http://www.facebook.com/AlibabaTechnology
https://twitter.com/AliTech2017

Track who’s speaking with Speaker Diarization aka Speaker-Recognition

https://medium.com/vmacwrites/track-whos-speaking-with-speaker-diarization-2e3eac2de2c3

Distinguishing between two speakers in a conversation is difficult especially when you are hearing

them virtually or for the first-time. Same can be the case when multiple voices interact with

AI/Cognitive systems, virtual assistants, and home assistants like Alexa or Google Home. To overcome

this, Watson’s Speech To Text API has been enhanced to support real-time speaker ‘diarization.’

IBM Watson

Post building a popular chatbot using Watson services called “WatBot”, there are a couple of requests

to include SpeakerLabels setting into our code sample.

So, what is Speaker Diarization?

Speaker diarization (or diarization) is the process of partitioning an input audio stream into

homogeneous segments according to the speaker identity. It can enhance the readability of an

automatic speech transcription by structuring the audio stream into speaker turns and, when used

together with speaker recognition systems, by providing the speaker’s true identity.

https://medium.com/vmacwrites/track-whos-speaking-with-speaker-diarization-2e3eac2de2c3
http://vidyasagarmsc.com/adding-watson-speech-to-text-to-your-android-app/
http://vidyasagarmsc.com/an-android-chatbot-powered-by-ibm-watson/

Real-time Speaker Diarization with Watson Speech-to-Text API

Why Speaker Diarization?

Real-time speaker diarization is a need we’ve heard about from many businesses across the world that

rely on transcribing volumes of voice conversations collected every day. Imagine you operate a call

center and regularly take action as customer and agent conversations happen — issues can come up

like providing product-related help, alerting a supervisor about negative feedback, or flagging calls

based on customer promotional activities. Prior to today, calls were typically transcribed and analyzed

after they ended. Now, Watson’s speaker diarization capability enables access to that data immediately.

To experience speaker diarization via Watson speech-to-text API on IBM Bluemix, head to

this demo and click to play sample audio 1 or 2. If you check the input JSON below; we are setting

“speaker_labels” optional parameter to true. This helps us in distinguishing between speakers in a

conversation.
{

 "continuous": true,

 "timestamps": true,

 "content - type": "audio / wav",

 "interim_results": true,

 "keywords": ["IBM", "admired", "AI", "transformations", "cognitive",

https://speech-to-text-demo.mybluemix.net/

"Artificial Intelligence", "data", "predict", "learn"],

 "keywords_threshold": 0.01,

 "word_alternatives_threshold": 0.01,

 "smart_formatting": true,

 "speaker_labels": true,

 "action": "start"

}

A part of output JSON after real-time speech-to-text conversion:
{

....

 “confidence”: 0.927,

 “transcript”: “So thank you very much for coming Dave it’s good to have you

here. “

}],

“final”: true,

“speaker”: 0

}

You can see that a speaker label is getting assigned to each speaker in the conversation.
Steps to enable speaker diarization

• Watson speech-to-text is available as a service on Bluemix, IBM Cloud platform. Create
now to leverage the service in your application.

• If you are taking the Rest API approach, don’t forget to include the optional parameter
“speaker_labels: true” in your request JSON.

• Based on the programming language your application is created, use any of the SDKs
available on Watson Developer Cloud ranging from Python, Node, Java, Swift etc.,

Refer WatBot repository to get a gist of how to enable or add speaker diarization to an existing android
app. Similarly, you can use other SDKs to achieve speaker diarization.
Note: Speaker labels are not enabled by default. Check ToDos in the code to uncomment.
Use cases
From integrating into chatbots to interacting with home assistants like Alexa, Google Home etc., From
call centers to medical services. The possibilities are endless.

https://bluemix.net/
https://github.com/watson-developer-cloud
https://github.com/VidyasagarMSC/WatBot

Speaker Recognition using Deep Learning

https://medium.com/@yaduvanshiharsh15/speaker-recognition-using-deep-learning-890fe812a976

Photo by Markus Spiske on Unsplash

Introduction

In today’s digital era, voice-based interactions have become increasingly prevalent. From voice

assistants like Siri and Alexa to authentication systems and security applications, accurately identifying

and recognizing speakers plays a pivotal role in enhancing user experiences and ensuring secure

access. This is where speaker recognition, a fascinating field at the intersection of artificial intelligence

and signal processing, comes into play.

For starters, speaker recognition can be understood as a technique to recognize who is speaking. It is

sometimes also known as voice recognition, voiceprint recognition, or talker recognition. However, it’s

important not to confuse speaker recognition with speech recognition. While both involve

the analysis of speech signals, the former is concerned with identifying the individual behind the voice,

whereas the latter focuses on transcribing and understanding the content of the spoken words.

Traditionally, speaker recognition relied on statistical modeling techniques such as Gaussian Mixture

Models (GMM) and Hidden Markov Models (HMM). While these methods have served their purpose,

recent advancements in deep learning have revolutionized the field, enabling more accurate and robust

speaker recognition systems.

In this article, we delve into the world of speaker recognition using deep learning. We explore the

underlying principles, methodologies, and techniques that empower these systems to decipher the

unique characteristics of individual voices. From data preparation and model architectures to training

strategies and evaluation metrics, we aim to provide a comprehensive overview of the key components

involved in developing effective speaker recognition systems.

https://medium.com/@yaduvanshiharsh15/speaker-recognition-using-deep-learning-890fe812a976
https://unsplash.com/@markusspiske?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral

Data Preparation

One of the key ingredients for developing a successful speaker recognition model is a high-quality

dataset. In our case, we utilized the widely acclaimed LibriSpeech Automatic Speech Recognition

(ASR) corpus. This dataset offers a rich collection of audio recordings encompassing a diverse range of

speakers and speech content.

The LibriSpeech dataset comprises approximately 1500 books, recorded by 251 different speakers.

Each audio file in the dataset is in the FLAC format, ensuring lossless compression and maintaining

the fidelity of the speech signals. To maintain consistency and facilitate organization, the dataset

follows a specific naming convention for each audio file. For example, consider the file named 103-

1240-0000.flac. Here, the speaker ID is "103," the book ID is "1240," and the utterance ID is

"0000." An utterance represents an audio clip of a speech signal, typically corresponding to a sentence

or a phrase spoken by the speaker.

To begin building our model, the first step is to create a dictionary that associates each speaker with

their corresponding utterances within the training dataset. We will refer to this dictionary

as speaker_to_utterance. By organizing the data in this manner, we establish a clear mapping

between speakers and their audio files, enabling efficient data retrieval during training and evaluation.

Let’s take a look at a code snippet that demonstrates this data preparation step:

def get_librispeech_speaker_to_utterance(data_dir):

 speaker_to_utterance = dict()

 flac_file = glob.glob(os.path.join(data_dir, "*", "*", "*.flac"))

 for file in flac_file:

 speaker_id = file.split("\\")[-3]

 utterance_id = file.split("\\")[-1].split(".")[0]

 if speaker_id not in speaker_to_utterance:

 speaker_to_utterance[speaker_id] = []

 speaker_to_utterance[speaker_id].append(file)

 return speaker_to_utterance

https://www.openslr.org/12
https://www.openslr.org/12

In this code snippet, we traverse through the directory structure of the training dataset, iterating over

each speaker, chapter, and audio file. We extract the necessary information, such as the speaker ID and

utterance ID, and store the corresponding file path in the speaker_to_utterance dictionary. At the

end of the process, we obtain a comprehensive dictionary containing all the speakers in the dataset as

keys, and their respective audio file locations as values. In our case, this dictionary will consist of a

total of 251 unique speakers.

Data Processing: Feature Extraction

In speaker recognition, one of the commonly used techniques is the Triplet loss, which we will also

employ in our model. With Triplet loss, our input consists of three segments: an anchor, a positive, and

a negative. The anchor and positive segments belong to the same speaker, while the negative segment

belongs to a different speaker. We will delve into the details of triplet loss later in the article.

Now that we understand the structure of our input, let’s focus on converting the audio files in FLAC

format into features that our model can process effectively. For this purpose, we will utilize Mel-

Frequency Cepstral Coefficients (MFCC). While there are other feature extraction techniques

available, such as Perceptual Linear Prediction (PLP), Perceptual Non-Linear Cepstral Coefficients

(PNCC), and Linear Frequency-Based Energies (LFBE), we will opt for MFCC in our case due to its

robustness in handling noise through logarithmic compression.

def get_triplet(spk_to_utts):

 """Get a triplet of anchor/pos/neg samples."""

 pos_spk, neg_spk = random.sample(list(spk_to_utts.keys()), 2)

 while len(spk_to_utts[pos_spk]) < 2:

 pos_spk, neg_spk = random.sample(list(spk_to_utts.keys()), 2)

 anchor_utt, pos_utt = random.sample(spk_to_utts[pos_spk], 2)

 neg_utt = random.sample(spk_to_utts[neg_spk], 1)[0]

 return (anchor_utt, pos_utt, neg_utt)

The get_triplet function randomly selects two different speakers, one for the positive segment and

another for the negative segment, from the provided spk_to_utts dictionary. It ensures that the

positive speaker has at least two utterances available. Then, it randomly selects one utterance each

from the positive speaker for the anchor and positive segments. Additionally, it randomly selects one

utterance from the negative speaker for the negative segment. The function returns a triplet containing

the paths of the anchor, positive, and negative utterances.

def extract_features(audio_file):

 """Extract MFCC features from an audio file, shape=(TIME, MFCC)."""

 waveform, sample_rate = soundfile.read(audio_file)

 if len(waveform.shape) == 2:

 waveform = librosa.to_mono(waveform.transpose())

 if sample_rate != 16000:

 waveform = librosa.resample(waveform, sample_rate, 16000)

 # Mel-frequency cepstral coefficients (MFCCs) are robust to noise bcoz of logarithmic

compression

 features = librosa.feature.mfcc(y=waveform, sr=sample_rate, n_mfcc=myconfig.N_MFCC)

 # the shape of features will be 40 X 441, where 40 represent featues where as 441

represent frames

 return features. Transpose()

The extract_features function takes an audio file as input and extracts Mel-

frequency cepstral coefficients (MFCCs) as features. It first reads the waveform

and sample rate from the audio file using the soundfile.read function. If the

waveform has two channels, it converts it to mono by taking the average of the

channels. If the sample rate is not 16000 Hz, it resamples the waveform to have a

sample rate of 16000 Hz.

The MFCC features are then computed using the librosa.feature.mfcc function,

which takes the waveform, sample rate, and the number of desired MFCC

coefficients as input. The resulting features are in the shape of a matrix, where

each row represents a feature, and each column represents a frame. The matrix is

transposed before being returned.

Model Architecture

In order to process continuous audio signals effectively, an LSTM (Long Short-

Term Memory) architecture is chosen for the speaker recognition model. LSTMs

are well-suited for capturing long-term dependencies in sequential data such as

audio. In this architecture, a bidirectional LSTM with three stacked LSTM layers

is utilized to enhance the model’s performance in capturing temporal patterns.

The model implementation is shown below using the PyTorch framework

class LstmSpeakerEncoder(BaseSpeakerEncoder):

 def __init__(self, saved_model=""):

 super(LstmSpeakerEncoder, self).__init__()

 self.lstm = nn.LSTM(

 input_size=myconfig.N_MFCC, # Number of MFCC coefficients (40)

 hidden_size=myconfig.LSTM_HIDDEN_SIZE, # Number of hidden units in each

LSTM layer (64)

 num_layers=myconfig.LSTM_NUM_LAYERS, # Number of stacked LSTM layers (3)

 batch_first=True,

 bidirectional=myconfig.BI_LSTM # Whether to use a bidirectional LSTM

(True/False)

)

 if saved_model:

 self._load_from(saved_model)

 def _aggregate_frames(self, batch_output):

 if myconfig.FRAME_AGGREGATION_MEAN:

 return torch.mean(batch_output, dim=1, keepdim=False)

 else:

 return batch_output[:, -1, :]

 def forward(self, x):

 D = 2 if myconfig.BI_LSTM else 1

 h0 = torch.zeros(D * myconfig.LSTM_NUM_LAYERS, x.shape[0],

myconfig.LSTM_HIDDEN_SIZE).to(myconfig.DEVICE)

 c0 = torch.zeros(D * myconfig.LSTM_NUM_LAYERS, x.shape[0],

myconfig.LSTM_HIDDEN_SIZE).to(myconfig.DEVICE)

 y, (hn, cn) = self.lstm(x, (h0, c0))

 return self._aggregate_frames(y)

The core component of the architecture is the self.lstm layer, which is an LSTM

module from PyTorch's nn module. It is configured with an input_size equal to the

number of MFCC coefficients (myconfig.N_MFCC), a hidden_size of the LSTM units

(myconfig.LSTM_HIDDEN_SIZE), a number of num_layers specifying the stacked LSTM

layers (myconfig.LSTM_NUM_LAYERS), and whether it is bidirectional

(myconfig.BI_LSTM).

During the forward pass, the input x is passed through the LSTM layer. The initial

hidden state h0 and cell state c0 are initialized as tensors of zeros with appropriate

dimensions. The output y and final hidden and cell states hn and cn are obtained

from the LSTM layer. The _aggregate_frames function is then used to aggregate the

output frames of the LSTM layer into a fixed-length representation, depending on

the value of myconfig.FRAME_AGGREGATION_MEAN. The aggregated output represents

the speaker embedding for the input audio sequence.

Overall, this model architecture employs a bidirectional LSTM with three stacked

LSTM layers for effective speaker recognition from continuous audio signals.

Model Training

def train_network(speaker_to_utterance, num_steps, saved_model="", pool=None):

 losses = []

 start_time = time.time()

 encoder = get_speaker_encoder_LSTM()

 #Train

 optimizer = torch.optim.Adam(encoder.parameters(), lr=myconfig.LEARNING_RATE)

 print("Start training")

 for step in range(num_steps):

 optimizer.zero_grad()

 #build batch input

 batch_input = feature_extraction.get_batched_triplet_input(speaker_to_utterance,

myconfig.BATCH_SIZE, pool)

 batch_output = encoder(batch_input) #batch_output.shape=[24,64*2]

 loss = get_triplet_loss_from_batch_output(batch_output, myconfig.BATCH_SIZE)

 loss.backward()

 optimizer.step()

 losses.append(loss.item())

 print(f"step: {step}/{num_steps} loss: {loss.item()}")

 # saving model

 if saved_model is not None and (step + 1) % myconfig.SAVE_MODEL_FREQUENCY == 0:

 checkpoint = saved_model

 if checkpoint.endswith(".pt"):

 checkpoint = checkpoint[:-3]

 checkpoint += ".ckpt-" + str(step + 1) + ".pt"

 save_model(checkpoint,encoder, losses, start_time)

 training_time = time.time() - start_time

 print("Finished training in", training_time, "seconds")

 if saved_model is not None:

 save_model(saved_model, encoder, losses, start_time)

 return losses

To train the LSTM-based speaker recognition model, the following steps are

performed:

1. Initializing the encoder: The speaker encoder is initialized using

the get_speaker_encoder_LSTM() function, which retrieves the LSTM-based

speaker encoder defined in the previous section.

2. Defining the optimizer: The Adam optimizer is used for training the

model. It is instantiated with the parameters of the encoder, and the

learning rate is set to myconfig.LEARNING_RATE.

3. Training loop: The training loop iterates over num_steps, which represents

the total number of training steps. In each iteration, the optimizer's

gradient is zeroed (optimizer.zero_grad()) to clear any accumulated

gradients from the previous iteration.

4. Batch input preparation:

The feature_extraction.get_batched_triplet_input() function is used to

construct a batch of triplet inputs from

the speaker_to_utterance dictionary. This function selects random

anchor, positive, and negative utterances belonging to different speakers

and forms a batch input. The batch size is determined

by myconfig.BATCH_SIZE.

5. Forward pass and loss calculation: The batch input is passed through the

encoder (encoder(batch_input)) to obtain the batch output, which

represents the speaker embeddings. The triplet loss is computed using

the get_triplet_loss_from_batch_output() function, which calculates the

loss based on the batch output and the batch size (myconfig.BATCH_SIZE).

6. Backpropagation and parameter update: The loss is backpropagated

through the model (loss.backward()) to compute the gradients of the

model parameters. The optimizer then performs a parameter update

(optimizer.step()) based on these gradients.

7. Loss tracking: The current loss value (loss.item()) is appended to

the losses list to track the training progress.

8. Saving the model: If a saved_model path is provided and the current step

is a multiple of myconfig.SAVE_MODEL_FREQUENCY, the model is saved to a

checkpoint file using the save_model() function. The checkpoint file name

includes the step number for easy identification.

9. Training completion: After completing the training loop, the total

training time (training_time) is calculated by subtracting the start time

from the current time. The final loss values are displayed, and if

a saved_model path is provided, the trained model, along with the losses

and start time, is saved using the save_model() function.

The training process trains the LSTM-based speaker encoder by optimizing the

model parameters with respect to the triplet loss. The model iteratively learns to

discriminate between different speakers and generate speaker embeddings that

capture the speaker characteristics present in the training data.

During model training, we can enhance the efficiency of our code by leveraging

multithreading, which allows for parallel execution of certain operations and can

significantly speed up the training process. Additionally, after the training is

completed, we can visualize the performance of our model by plotting a graph of

the loss versus the number of training epochs. This graph provides valuable

insights into the model’s convergence and helps us assess the effectiveness of our

training procedure.

def run_training():

 print("Training data:", myconfig.TRAIN_DATA_DIR)

 speaker_to_utterance =

dataset.get_librispeech_speaker_to_utterance(myconfig.TRAIN_DATA_DIR)

 with multiprocessing.Pool(myconfig.NUM_PROCESSES) as pool:

 losses = train_network(speaker_to_utterance,

 myconfig.TRAINING_STEPS,

 myconfig.SAVED_MODEL_PATH,

 pool)

 plt.plot(losses)

 plt.xlabel("step")

 plt.ylabel("loss")

 plt.show()

Graph of Loss vs Epoch (Image from Author)

Model Evaluation & Result

For model evaluation, we will use Equal Error Rate (EER), which is a common

metric used in speaker recognition. It iterates over different threshold values to

find the threshold that minimizes the difference between false acceptance rate

(FAR) and false rejection rate (FRR).

The output of Evaluation.py (Image by Author)

In the above image, eer_threshold represents the threshold value at which the

Equal Error Rate (EER) is achieved. It indicates the similarity score threshold that

balances the false acceptance and false rejection rates. In the example,

the eer_threshold is 0.8310000000000006. On the other hand, eer represents the

EER itself, which is the average of the false acceptance rate and the false rejection

rate. In the example, the EER is 0.2, indicating a 20% error rate in both false

acceptances and false rejections.

These values provide insights into the performance of the speaker recognition

system. The eer_threshold helps determine the threshold at which the system

achieves a balanced error rate, while the eer gives an overall measure of the

system's accuracy in distinguishing between genuine and impostor samples.

Difference between Model Training and Model Evaluation method

During training, the model is trained using triplets of data consisting of an

anchor, a positive segment, and a negative segment. These triplets are used to

learn embeddings that can discriminate between different speakers. In each batch

during training, the batch_input contains multiple triplets, and the model is

trained to optimize the embedding space based on the relationships between the

anchor, positive, and negative segments within each triplet.

However, during testing or evaluation, the goal is to compute embeddings for

individual utterances and compare them to determine the similarity between

different speakers. In this case, there is no need to compute embeddings for

triplets because there are no anchor-positive-negative relationships to consider.

Instead, each utterance is processed independently to obtain its embedding.

In summary, during training, triplets of data are used to train the model, while

during testing/evaluation, individual utterances are processed separately to

compute embeddings and perform similarity comparisons.

Conclusion

In conclusion, while our speaker recognition model based on LSTM architecture has shown promising

results, there are opportunities for further improvement. Exploring the use of Transformer models,

known for their effectiveness in natural language processing tasks, could enhance the model’s ability to

capture complex patterns in audio data. Refining feature extraction techniques, leveraging diverse

datasets, and addressing challenges such as varying acoustic conditions and speaker characteristics are

key areas for future research. By embracing advancements and collaboration, we can advance the

accuracy and reliability of speaker recognition systems and contribute to this dynamic field.

To delve deeper into the code and explore additional possibilities, please visit my GitHub repository.

Thank you for joining us on this journey through the world of speaker recognition. Let us continue to

push the boundaries and unlock the potential of this exciting field.

https://github.com/harshyadav1508/Audio_speakerRecognition/tree/master

