
Speaker Recognition in Natural Language Processing: A Comprehensive Overview 

https://medium.com/the-modern-scientist/speaker-recognition-in-natural-language-
processing-a-comprehensive-overview-03c3138b5e52 

Introduction 

In the realm of Natural Language Processing (NLP), speaker recognition is a 

critical subfield that focuses on identifying and verifying the identity of a speaker 

based on their vocal characteristics. While NLP primarily deals with 

understanding and processing text, the integration of speaker recognition 

techniques broadens its scope and applicability. This essay delves into the concept 

of speaker recognition in NLP, discussing its significance, methods, challenges, 

and applications. 

 

Speaker Recognition in Natural Language Processing: Unveiling the Voice of Identity. 

Significance of Speaker Recognition in NLP 

Speaker recognition is a powerful tool that enhances NLP systems in various 

ways. Its significance can be understood through the following key points: 

1. Security and Access Control: In today’s digital world, securing 

access to sensitive information is a paramount concern. Speaker 

recognition is commonly used in applications such as voice-activated 
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authentication systems, allowing users to access their accounts and 

devices securely. 

2. Personalized User Experiences: Many NLP applications benefit 

from recognizing a user’s voice. For instance, voice assistants like Siri 

and Alexa can personalize responses based on the speaker’s 

preferences and previous interactions. 

3. Forensic Analysis: Speaker recognition plays a pivotal role in 

forensic analysis, aiding law enforcement agencies in identifying 

criminals through intercepted voice communications. 

4. Customer Service: In the customer service industry, recognizing 

individual callers can lead to a more personalized and efficient service 

experience. Automated call centers can use speaker recognition to 

route calls to the most relevant agents. 

Methods of Speaker Recognition 

Speaker recognition can be broadly classified into two categories: speaker 

identification and speaker verification. 

1. Speaker Identification: This process involves determining the 

identity of a speaker from a set of known speakers. It typically 

employs techniques such as Gaussian Mixture Models (GMM), 

Hidden Markov Models (HMM), and deep learning methods like 

Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs). These models analyze acoustic features, such as 

Mel-frequency cepstral coefficients (MFCCs), to distinguish between 

different speakers. 



2. Speaker Verification: Speaker verification, on the other hand, 

focuses on verifying whether a given voice sample matches a 

particular speaker’s identity. This is commonly used in applications 

requiring authentication, where the system compares the voice input 

with a stored voiceprint. 

Challenges in Speaker Recognition 

Despite the potential of speaker recognition in NLP, it faces several challenges: 

1. Variability in Voice: Speakers’ voices can vary significantly due to 

factors such as emotional state, health, and environmental conditions. 

Robust speaker recognition systems must account for these variations. 

2. Data Privacy: The collection and storage of voice data for 

recognition purposes raise concerns about privacy and data security. 

Striking a balance between utility and user privacy is a complex 

challenge. 

3. Speaker Impersonation: Malicious actors can attempt to 

impersonate legitimate speakers, making it essential for recognition 

systems to be robust against such attacks. 

4. Limited Data: Developing accurate speaker recognition models 

requires substantial labeled data for training. This can be a limitation, 

especially for less-represented languages and dialects. 

Applications of Speaker Recognition in NLP 

Speaker recognition in NLP has found its way into a wide range of applications, 

including: 



1. Voice Assistants: Popular voice assistants like Siri, Google 

Assistant, and Amazon’s Alexa use speaker recognition to personalize 

responses and identify different users in multi-user households. 

2. Banking and Finance: Speaker recognition is used to secure phone 

banking and access to financial services, adding an extra layer of 

authentication. 

3. Law Enforcement: In the realm of criminal investigations, speaker 

recognition helps law enforcement agencies identify suspects through 

voice analysis. 

4. Healthcare: In telemedicine and healthcare, speaker recognition can 

be used to authenticate doctors and patients for secure and 

confidential communication. 

Code 

Creating a complete Python code for speaker recognition with plots is a complex 

task that would require extensive libraries, data, and time. However, I can provide 

you with a simplified example using a pre-trained model, libraries for audio 

processing, and some basic plots. 

In this example, we’ll use the pyAudioAnalysis library for feature extraction, 

and scikit-learn for classification. Note that for a production-level speaker 

recognition system, you would require a substantial amount of labeled audio data 

and more sophisticated models. 

# Import necessary libraries 

import pyaudio 

import wave 

import os 

import numpy as np 

import matplotlib.pyplot as plt 

from pyAudioAnalysis import audioBasicIO 

from pyAudioAnalysis import audioFeatureExtraction 



from sklearn.model_selection import train_test_split 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score 

from sklearn.preprocessing import StandardScaler 

 

# Define functions for audio feature extraction 

def extract_features(file_path): 

    [Fs, x] = audioBasicIO.read_audio_file(file_path) 

    F, f_names = audioFeatureExtraction.short_term_feature_extraction(x, Fs, 0.050*Fs, 

0.025*Fs) 

    return F 

 

# Create a dataset of audio features (sample data) 

dataset_path = "speaker_data" 

speakers = ["speaker1", "speaker2"] 

X = [] 

y = [] 

 

for speaker in speakers: 

    speaker_folder = os.path.join(dataset_path, speaker) 

    for audio_file in os.listdir(speaker_folder): 

        if audio_file.endswith(".wav"): 

            feature_vector = extract_features(os.path.join(speaker_folder, audio_file)) 

            X.append(feature_vector) 

            y.append(speaker) 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Standardize features 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

# Train a classifier (Support Vector Machine) 

clf = SVC() 

clf.fit(X_train, y_train) 

 

# Predict and evaluate 

y_pred = clf.predict(X_test) 

accuracy = accuracy_score(y_test, y_pred) 

print(f"Accuracy: {accuracy*100:.2f}%") 

 

# Plot the results 

unique_speakers = np.unique(speakers) 

confusion_matrix = np.zeros((len(unique_speakers), len(unique_speakers)) 

for true, pred in zip(y_test, y_pred): 

    confusion_matrix[np.where(unique_speakers == true), np.where(unique_speakers == 

pred)] += 1 

 

plt.imshow(confusion_matrix, interpolation="nearest", cmap=plt.cm.Blues) 

plt.title("Speaker Recognition Confusion Matrix") 

plt.colorbar() 

 

tick_marks = np.arange(len(unique_speakers)) 

plt.xticks(tick_marks, unique_speakers, rotation=45) 

plt.yticks(tick_marks, unique_speakers) 

 

plt.tight_layout() 

plt.ylabel("True label") 



plt.xlabel("Predicted label") 

plt.show() 

In this code: 

1. We use pyAudioAnalysis for audio feature extraction, scikit-learn for 

machine learning, and matplotlib for plotting. 

2. The code assumes you have audio data in the “speaker_data” folder, 

where subfolders contain audio files for different speakers. 

3. Features are extracted from the audio files and used to train a Support 

Vector Machine (SVM) classifier. 

4. The accuracy of the classifier is calculated and a confusion matrix is 

plotted. 

Remember, this is a simplified example. In a real-world scenario, you would need a 

more extensive dataset and possibly more complex models for robust speaker 

recognition. 

Conclusion 

Speaker recognition in NLP is a dynamic and evolving field with diverse applications 

and substantial potential. As technology continues to advance, the accuracy and 

reliability of speaker recognition systems will improve, addressing many of the existing 

challenges. The integration of speaker recognition techniques into NLP not only 

enhances user experiences but also adds a layer of security and personalization, making 

it a valuable asset in the modern digital landscape. However, it is imperative to address 

privacy concerns and ethical considerations to ensure responsible and secure 

implementation in the ever-expanding world of NLP applications. 



Speaker Recognition: Unlocking the Power of Voice 

https://medium.com/the-modern-scientist/speaker-recognition-unlocking-the-power-
of-voice-d59c40db5450 

Introduction 

In our ever-evolving world of technology, voice-based interactions have become increasingly 

prevalent. From virtual assistants to voice-controlled devices, the ability to recognize and 

authenticate individuals based on their unique vocal characteristics has gained significant 

importance. Speaker recognition, a subfield of biometrics, offers a promising solution by 

leveraging the distinct patterns present in an individual’s voice to identify and verify their 

identity. This essay explores the fundamentals, applications, challenges, and advancements in 

speaker recognition, shedding light on its growing significance in our modern society. 

 

Understanding Speaker Recognition 

Speaker recognition, also known as voice recognition or speaker identification, is the process of 

identifying and verifying the identity of a speaker based on their unique vocal characteristics. 

These characteristics encompass a wide range of factors, including pitch, accent, intonation, 

speech patterns, and pronunciation nuances. By analyzing these distinct features, 

sophisticated algorithms and models can determine the likelihood of a speaker’s identity, 

comparing it with stored voice profiles in a database. 
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Applications of Speaker Recognition 

1. Forensic Investigations: Speaker recognition plays a vital role in law 

enforcement and forensic investigations. It enables the identification of 

individuals based on recorded voice samples, aiding in the resolution of criminal 

cases and providing crucial evidence in court proceedings. 

2. Access Control and Security: Speaker recognition has found significant 

application in access control systems, enhancing security measures in various 

domains. Voice-based authentication can provide secure and convenient access 

to restricted areas, devices, or accounts, replacing traditional methods such as 

PINs or passwords. 

3. Telecommunications and Customer Service: Speaker recognition 

technology is employed in telecommunication systems to authenticate users 

during phone-based transactions, ensuring secure and convenient interactions. 

Additionally, it assists in providing personalized customer service experiences, 

enabling automated systems to recognize and respond to individual callers. 

4. Voice Assistants and Home Automation: Virtual assistants like Siri, Alexa, 

and Google Assistant rely on speaker recognition to differentiate between 

different users within a household. This allows for personalized responses, 

tailored recommendations, and customized user experiences. 

Challenges in Speaker Recognition 

Despite the advancements in speaker recognition technology, several challenges persist, posing 

limitations and room for improvement: 

1. Variability in Voice Data: Factors such as background noise, microphone 

quality, and emotional state can affect the quality and consistency of voice data, 

making accurate recognition more challenging. 



2. Impersonation and Spoofing: The vulnerability of speaker recognition 

systems to impersonation and spoofing poses a significant challenge. Adversaries 

may attempt to mimic or manipulate voice samples to gain unauthorized access 

or deceive the system, necessitating robust anti-spoofing techniques. 

3. Privacy and Ethical Considerations: The collection and storage of voice data 

raises concerns regarding privacy, security, and ethical use. Striking a balance 

between the convenience of voice-based authentication and safeguarding 

individuals’ personal information is crucial. 

Advancements in Speaker Recognition: 

Researchers and technologists continue to make remarkable progress in the field of speaker 

recognition. Recent advancements include: 

1. Deep Learning and Neural Networks: The adoption of deep learning 

techniques, particularly neural networks, has significantly improved the accuracy 

and robustness of speaker recognition systems. Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) have shown promising results in 

voice feature extraction and modeling. 

2. Multi-Modal Approaches: Integrating multiple modalities, such as speech 

and visual cues, can enhance speaker recognition systems’ performance and 

security. Combining audio analysis with lip movement, facial recognition, or 

behavioral patterns provides a more comprehensive and reliable means of 

speaker identification. 

3. Anti-Spoofing Measures: Researchers are actively developing and refining 

anti-spoofing techniques to counter fraudulent attempts to deceive speaker 

recognition systems. These measures involve analyzing various aspects of voice 

data, such as high-frequency components, acoustic properties, and temporal 

characteristics, to detect spoofing attacks. 



There are several techniques and approaches used in speaker recognition systems. Here are 

some commonly employed techniques: 

1. Feature Extraction: Feature extraction is a crucial step in speaker recognition, 

where relevant information is extracted from speech signals to represent the 

speaker’s characteristics. Some commonly used features include: 

- Mel-Frequency Cepstral Coefficients (MFCCs): These coefficients 

represent the spectral envelope of the speech signal, capturing information about 

the shape of the vocal tract. 

- Linear Predictive Coding (LPC): LPC analyzes the linear prediction error of 

the speech signal, capturing information about the vocal tract resonances. 

- Perceptual Linear Prediction (PLP): PLP combines aspects of MFCC and 

LPC techniques, considering both the spectral and temporal characteristics of the 

speech signal. 

2. Speaker Modeling: Once the features are extracted, various modeling 

techniques are employed to represent the speaker’s characteristics. Some 

common modeling approaches include: 

- Gaussian Mixture Models (GMMs): GMMs are probabilistic models that 

represent the statistical distribution of speaker-specific feature vectors. They can 

be trained to estimate the likelihood of a given feature vector belonging to a 

particular speaker. 

- Hidden Markov Models (HMMs): HMMs are widely used for speech and 

speaker recognition. They model the temporal dynamics of speech and capture 

the transitions between different speech sounds or speaker characteristics. 

- Support Vector Machines (SVMs): SVMs are supervised machine learning 

models that can be trained to classify speaker-specific feature vectors based on a 

given training set. 

- Deep Neural Networks (DNNs): DNNs, particularly Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), have shown 



promising results in speaker recognition. They can learn complex representations 

from raw audio data and capture both spectral and temporal information 

effectively. 

3. Enrollment and Verification: The speaker recognition process typically 

involves two main steps: enrollment and verification. 

- Enrollment: During enrollment, the system creates a speaker model or 

template by training the chosen modeling technique on a set of known or labeled 

speaker data. This template represents the unique characteristics of the speaker’s 

voice. 

- Verification: In the verification phase, the system compares a test sample to 

the enrolled speaker models. The similarity or distance between the test sample 

and each enrolled model is computed, and a decision is made based on a 

predefined threshold to accept or reject the claimed speaker’s identity. 

4. Anti-Spoofing Techniques: To mitigate the risk of spoofing attacks and 

ensure the integrity of the speaker recognition system, various anti-spoofing 

techniques are employed. These techniques aim to differentiate between genuine 

speech and artificially generated or manipulated speech samples. Common anti-

spoofing methods include analyzing high-frequency components, detecting voice 

activity, examining acoustic properties, and employing machine learning 

algorithms to identify spoofed or manipulated samples. 

It’s important to note that the choice of techniques and algorithms may vary depending on the 

specific requirements, dataset availability, and the complexity of the speaker recognition task. 

Researchers and practitioners continue to explore new techniques and combine multiple 

approaches to improve the accuracy, robustness, and security of speaker recognition systems. 



 

Speaker recognition has made significant progress over the years, but there are still several 

open problems and challenges that researchers and technologists are actively addressing. 

Some of the key open problems in speaker recognition include: 

1. Robustness to Variability: Speaker recognition systems often struggle with 

handling variability in speech, including different speaking styles, accents, 

languages, and emotional states. Developing models and algorithms that can 

effectively handle such variability and provide accurate recognition regardless of 

these factors remains an open problem. 

2. Speaker Diarization: Speaker diarization involves segmenting an audio 

recording into individual speaker segments. It is a crucial step in speaker 

recognition systems, especially in scenarios where multiple speakers are present. 

Accurate and efficient diarization techniques that can handle overlapping speech, 

background noise, and speaker turn-taking in real-world environments are areas 

of active research. 



3. Data Scarcity and Diversity: The availability of large and diverse speaker 

datasets plays a vital role in training robust speaker recognition models. 

However, acquiring such datasets can be challenging due to privacy concerns, 

especially when dealing with sensitive voice data. Developing techniques to 

overcome data scarcity while ensuring data privacy and diversity remains an 

open problem. 

4. Cross-lingual and Cross-domain Recognition: Many speaker recognition 

systems are designed and trained on specific languages or domains, limiting their 

effectiveness in cross-lingual or cross-domain scenarios. Developing techniques 

that can generalize well across different languages, dialects, and domains is an 

ongoing challenge in the field. 

5. Vulnerability to Adversarial Attacks: Speaker recognition systems are 

susceptible to adversarial attacks, where an adversary deliberately manipulates 

the voice samples to deceive the system. Adversarial attacks can include 

impersonation, voice synthesis, or modifying audio signals to alter the recognized 

speaker’s identity. Developing robust anti-spoofing techniques and ensuring 

system security against such attacks is a critical open problem. 

6. Privacy and Ethical Considerations: As speaker recognition technology 

becomes more prevalent, concerns around privacy and ethical use of voice data 

are increasing. Designing systems that prioritize user privacy, obtain informed 

consent, and implement secure data storage and handling mechanisms are 

ongoing challenges to address. 

7. Real-time and Resource-constrained Applications: Speaker recognition 

systems are often required to operate in real-time or on resource-constrained 

devices, such as smartphones or IoT devices. Ensuring efficient and accurate 

speaker recognition in these scenarios, where computational resources and 

processing power are limited, is an open problem. 



Addressing these open problems in speaker recognition requires interdisciplinary research, 

encompassing areas such as signal processing, machine learning, natural language processing, 

and human-computer interaction. Continued collaboration and innovation in these fields will 

contribute to the development of more robust, accurate, and secure speaker recognition 

systems in the future. 

Here’s an example of speaker recognition code in Python using the scikit-learn library and the 

Gaussian Mixture Model (GMM) approach for modeling: 

import numpy as np 

from sklearn.mixture import GaussianMixture 

 

# Training data 

# Each row represents the feature vector of a speaker 

train_data = np.array([ 

    [0.1, 0.2, 0.3, 0.4],  # Speaker 1 

    [0.2, 0.3, 0.4, 0.5],  # Speaker 1 

    [0.9, 0.8, 0.7, 0.6],  # Speaker 2 

    [0.8, 0.7, 0.6, 0.5]   # Speaker 2 

]) 

 

# Create labels for the training data 

train_labels = np.array([0, 0, 1, 1])  # 0 represents Speaker 1, 1 represents Speaker 2 

 

# Testing data 

# Each row represents the feature vector of a test sample 

test_data = np.array([ 

    [0.3, 0.4, 0.5, 0.6],  # Unknown speaker 

    [0.7, 0.6, 0.5, 0.4]   # Unknown speaker 

]) 

 

# Train the Gaussian Mixture Model (GMM) with the training data 

gmm = GaussianMixture(n_components=2)  # Number of components equals the number of 

speakers 

gmm.fit(train_data) 

 

# Predict the labels for the testing data 

predicted_labels = gmm.predict(test_data) 

 

# Display the predicted labels 

for label in predicted_labels: 

    print("Predicted Speaker:", label) 

In this example, we have two speakers represented by their respective feature 

vectors in the train_data array. The corresponding labels are provided in 



the train_labels array. We then create a GMM object with two components 

(representing the two speakers) using GaussianMixture from scikit-learn. The 

GMM is trained on the training data using the fit() method. 

Next, we have some test samples represented by feature vectors in 

the test_data array. We use the trained GMM model to predict the labels for these 

test samples using the predict() method. The predicted labels are stored in 

the predicted_labels array. 

Finally, we display the predicted labels to identify the corresponding speakers. 

Note: This is a simplified example for illustration purposes. In practice, you may 

need to preprocess the audio data, extract appropriate features (such as MFCCs), 

and handle larger datasets. Additionally, consider incorporating anti-spoofing 

techniques and other enhancements for a more robust speaker recognition 

system. 

Conclusion 

Speaker recognition has emerged as a powerful technology with a wide range of 

applications in various sectors, including security, telecommunications, and 

personalization. While significant progress has been made, there are still 

challenges to overcome, such as variability in voice data and the potential for 

spoofing. Nonetheless, ongoing advancements in deep learning, multi-modal 

approaches, and anti-spoofing techniques offer promising solutions. As the field 

continues to evolve, speaker recognition is poised to play an increasingly integral 

role in our voice-driven future, enabling secure and personalized interactions with 

technology. 

 
 



Speaker Recognition 

Model Building 

https://medium.com/@makcedward/speaker-recognition-c133ed89ad7c 

 

1. Collect a dataset of audio recordings: You will need a dataset of audio recordings of people 

speaking to train your speaker recognition model. This dataset should include multiple 

recordings of each speaker. You may use recordings from a variety of sources, such as 

public datasets (e.g. VoxCeleb), private datasets, or a combination of both. 

2. Extract features from the audio recordings: Once you have collected your audio recordings, 

you need to extract features from them. Common features used for speaker recognition 

include Mel-Frequency Cepstral Coefficients (MFCCs), Linear Predictive Coding (LPC) 

coefficients, and other speech processing techniques. 

3. Train a model on the extracted features: After extracting the features from the audio 

recordings, you can use them to train a model for speaker recognition. Popular models for 

speaker recognition include Hidden Markov Models (HMMs), and Deep Neural Networks 

(DNNs). 

4. Test the model: Once you have trained your model, you can test it on unseen audio 

recordings to measure its performance via an equal error rate (EER). This can be done by 

comparing the model’s predictions against the true speaker labels in the test dataset. 
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Speaker Recognition from Audio 
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In my previous work, I focused on text-based machine learning (ML) models such 

as named entity recognition (NER), intention classification, and topic modeling. I 

am preparing a new series of blogs that are acoustic-related topics. This is the first 

post of this series, so I will try to illustrate the overall landscape of the acoustic 

domain via one of the classific problems. 

Data Variety 
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Voice includes lots of variety even though people speak the same transcript. You 

can distinguish two voices who speak from two different people. Even for the 

same person, voices can be different when you have different emotions (e.g., 

happy, angry, sad, etc.). 

Input Type 
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We may feed bytes, characters, or tokens into a text-based ML model. On the 

other hand, we can feed waveform or spectrogram into an acoustic ML model. A 

spectrogram is a visualization of representing the signal (i.e., 

voice) strength (i.e., loudness) of a signal over time at various frequencies. 

 
Waveform Visualization 
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In exploratory data analysis, it is not that hard to explore characters or tokens. 

Unlike text, we can not visualize audio clips directly. Waveform and spectrogram 

visualization is a good way to understand our data. 

You may use audio-preview plugin (if you are using Visual Studio), native 

software on your machine, or Jupyter Notebook (with librosa) to understand it. 

Alternatively, we may use cloud solutions to achieve the same purpose. For 

example, once uploading files to DagsHub, everyone with access is able to listen 

and visualize it via browser. 

 
Spectrogram Visualization 

Lots of modern ML models consume spectrograms (or mel-spectrograms) instead 

of waveforms for several reasons. Waveform includes more information but 

spectrogram are closed to the human auditory system. Another reason is that we 

can reuse computer vision model architecture on the acoustic models. I will show 

how to use the computer vision (CV) architecture, ResNet [1], and speaker 

recognition model later. 

Speaker Recognition 
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Our toy problem is speaker recognition. Given voice input, we want to identify the 

speaker. It is similar to facial recognition and finger recognition when you try to 

unlock your iPhone. 

Both speaker verification and identification are under the speaker recognition 

umbrella. Speaker identification refers to determining who the enrolled speaker 

is. Speaker verification means either accepting or rejecting the identity claimed by 

a speaker. 

Dataset 
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In the regression problem, we have the titanic dataset. In audio problems, I 

usually start from the LibriSpeech dataset [2]. You may download it 

from OpenSLR, PyTorch, TensorFlow, or HuggingFace. 

Although we can download it from the internet easily, it is raw audio data (i.e., 

waveform). As mentioned in the previous section, we feed spectrogram data to 

ML models instead of waveform data. You may convert waveform data to 

spectrogram and persist in your local machine. It is fine if you work alone without 
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any scale requirement. Another option is uploading it to a cloud provider (e.g., 

AWS, GCP), but you have to manage it by yourself. 

Alternatively, you may consider using the Direct Data Access feature which is 

provided by DagsHub. It helps us to streamline the process of uploading and 

downloading from the cloud. We can focus on model training rather than 

infrastructure. 

The following codes show how to upload files to DagsHub’s cloud. 

# Initialize remote date repository 

from dagshub.upload import Repo 

repo = Repo(repo_owner, repo_name) 

dataset_dir = 'datastore' 

ds = repo.directory(dataset_dir) 

 

# Iterlate local audio file paths 

for f in audio_file_paths: 

    file_name = os.path.basename(f) 

    _id, session, _ = file_name.split('-') 

     

    remote_file_path = os.path.join( 

        'LibriSpeech', 

        _id, 

        session, 

        file_name 

    ) 

     

    # Upload file 

    ds.add(file=f, path=remote_file_path) 

 

# Commit change on files upload 

ds.commit(f"Upload {total_cnt} audio files", versioning="dvc") 

We simply use the API from DagsHub to get back data. No major difference when 

loading files locally. 

from dagshub.streaming import DagsHubFilesystem 

fs = DagsHubFilesystem() 

 

import csv 

 

metadata = {} 

https://dagshub.com/docs/feature_guide/direct_data_access/
https://dagshub.com/


with fs.open('datastore/LibriSpeech/metadata.csv') as infile: 

    reader = list(csv.reader(infile)) 

    for row in reader[1:]: 

        metadata[row[0]] = len(metadata) 

After talking about data storage, we will move to data processing. Converting 

waveform to mel-spectrogram is a very typical process, and most of the models 

consume it. Therefore, you may consider caching the processed result. 

Data Processing 
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librosa [3] is a famous python package for music and audio analysis. It provides 

an easy way to convert raw waveform data to mel-spectrogram data. 

# Load audio data 

y, sr = librosa.load(file_path, sr=sample_rate) 

# Convert waveform to mel-spectogram 

spec=librosa.feature.melspectrogram(y=f.numpy(), sr=sample_rate) 

# Convert a power spectrogram (amplitude squared) to decibel (dB) units 

spec_db=librosa.power_to_db(spec) 

Sample rate means the number of samples per second. For example, 16000 means 

there are 16000 data points per second. Higher sample rates include more data 

points. 16000, 22050, 44100, and 48000 are sample rates that I usually use. 

When working on audio data, it will be good to have the same sample rate across 

all data feeding into the ML model. 

Passing sample_rate into librosa.load function, which helps to convert the audio 

clip to the expected sample rate. 

 

https://unsplash.com/@new_data_services?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://github.com/librosa/librosa
https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://librosa.org/doc/main/generated/librosa.load.html


Modeling 
 

Photo by Kelly Sikkema on Unsplash 

I mentioned we could leverage CV model architecture on the acoustic model. 

Simply load the ResNet34 model by using torchvision package, we have the pre-

trained model now. 

from torchvision.models import resnet34 

import torch.nn as nn 

# Load ResNet34 CV model 

resnet_model = resnet34(weights=True) 

# Adjusted the last layer output for our binary classification use case 

resnet_model.fc = nn.Linear(512, label_cnt) 

# Adjust the first convolution neural network (CNN) layer for our use case 

resnet_model.conv1 = nn.Conv2d( 

  1,  

  64, 

  kernel_size=(7, 7), 

  stride=(2, 2),  

  padding=(3, 3),  

  bias=False 

) 

Tracking 
 

Photo by Sandra Tan on Unsplash 

Experiment tracking is very important when building a model. It allows us to 

compare model metrics (performance, training time, etc) against different 

settings. You can mark it down into a spreadsheet or use experiment tracking 

tools. Weights & Biases, Comet ML, mlflow are some of the great tools that we can 

use. 

We do not need extra tools if we use DagsHub as you just need to run a few lines 

of code (auto-tracking is available for some frameworks such as PyTorch Lighting) 

to create the experiment tracking. 

https://unsplash.com/@kellysikkema?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://pytorch.org/vision/stable/models.html
https://unsplash.com/@sandratansh?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral
https://iterative.ai/why-iterative?utm_source=adwords&utm_medium=ppc&utm_campaign=G_SRCH_NOB_Competitors&utm_content=141070412790&utm_term=weights+and+biases&hsa_acc=9352334349&hsa_cam=17377655903&hsa_grp=141070412790&hsa_ad=601174904291&hsa_src=g&hsa_tgt=kwd-810013433974&hsa_kw=weights+and+biases&hsa_mt=e&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQiAyMKbBhD1ARIsANs7rEEXVkzpTqzcMA8ePRNBTMdr8QErJpapIaSHmsMnc8ltwK_tkBSUjVEaAq2KEALw_wcB
https://www.comet.com/site/
https://mlflow.org/
https://dagshub.com/docs/feature_guide/git_tracking/
https://www.pytorchlightning.ai/


from dagshub import DAGsHubLogger 

logger = DAGsHubLogger( 

  metrics_path="logs/test_metrics.csv",  

  hparams_path="logs/test_params.yml" 

)  

logger.log_hyperparams({ 

    'learning_rate':learning_rate, 

    'optimizer': 'adam', 

    'epoch': 3, 

    'loss': 'ce' 

}) 

 

accuracy = evaluate(model, x, y_true) 

logger.log_metrics({'accuracy': accuracy}) 

Model Registry 
 

Photo by Wedding Dreamz on Unsplash 

Besides metrics, we also want to keep the trained model, as we may need to load it 

later. Model Registry is another important section that we need to take care of. We 

can simply save the model locally or upload it to the cloud (e.g., AWS, Azure, 

GCP). However, management is needed but not just storing the file. For example, 

the association between the experiment and the model is needed. Model access 

control is suggested as we may only want to share our model with the targeted 

group of people but not all. 

Same to the dataset, we can upload the model to DagsHub so that we have a single 

view to access the code, experiment, and model. 

from dagshub.upload import Repo 

repo = Repo(REPO_OWNER, REPO_NAME) 

 

dataset_dir = 'model' 

ds = repo.directory(dataset_dir) 

 

from dagshub.streaming import DagsHubFilesystem 

fs = DagsHubFilesystem() 

 

https://unsplash.com/@wedding_dreamz?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral


ds.add(file='trained_model.pt', path='trained_model.pt') 

ds.commit(f"Upload model", versioning="dvc") 

Take Away 

Having a centralized place to keep tracking code, experiment, and model helps us to focus on the 

model rather than MLOps. A model builder is an expert in training a good model for the company but 

may not be good at building MLOps infrastructure. 

Here is the full script for the model training. To balance the optimization and readability, we simplify 

the flow such as data streaming, data processing, and modeling. There are a few things that we can 

further optimize the data processing part. Instead of streamlining data at the very beginning, we 

should load data on demand to maximize the Direct Data Access feature. Also, we may introduce data 

augmentation if a more generalized model is needed. To maximize DagsHub Storage feature, we can 

preprocess (i.e. convert waveform to spectrogram) data and upload it instead of processing data every 

time. 

Here is the repo for the datastore, experiment tracking, and model registry. You may access it to 

understand how we can combine everything together. 

Like to learn? 

I am Data Scientist in Bay Area. Focusing on the state-of-the-art in Data Science, Artificial Intelligence, 

especially in NLP and platform related. Feel free to connect with me on LinkedIn or Github. 
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Automatic Speaker Recognition using Transfer Learning 

https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-

6fab63e34e74  

When tasked with the challenge of creating a dynamic voice identifier, naturally the tool of choice 

for our team would be an image classifier 

Even with today’s frequent technological breakthroughs in speech-interactive devices (think Siri and 

Alexa), few companies have tried their hand at enabling multi-user profiles. Google Home has been the 

most ambitious in this area, allowing up to six user profiles. The recent boom of this technology is what 

made the potential for this project very exciting to our team. We also wanted to engage in a project that 

is still a hot topic in deep-learning research, create interesting tools, learn more about neural network 

architectures, and make original contributions where possible. 

We sought to create a system able to quickly add user profiles and accurately identify their voices with 

very little training data, a few sentences as most! This learning from one to only a few samples is 

known as One Shot Learning. This article will outline the phases of our project in detail. 

I. Project Summary 

Goal: Classify speakers with minimal training such that only a few words or sentences are needed to 

achieve high levels of accuracy. 

Data: Training data was scraped from Librivox, a source of open domain audiobooks. Testing data 

was either scraped off YouTube or collected live. 

Method: In summary, we converted all of our audio data to spectrogram form. We then trained a 

CNN derived from Cifar-10 on many speakers as a feature extractor to feed into an SVM for final 

https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-6fab63e34e74
https://medium.com/towards-data-science/automatic-speaker-recognition-using-transfer-learning-6fab63e34e74
https://en.wikipedia.org/wiki/One-shot_learning


classification. This approach is known as transfer learning. This approach enabled us to reap the small 

sample high performance of SVM and feature learning of CNNs. 

Applications: The potential applications for our proposed systems are plentiful. They range from 

home assistant needs (think Alexa and Google Home) to biometric security, marketing tools, and even 

spying (identifying high profile targets). It could also be used as a tool for speaker diarisation in speech 

data collection. Given some small previous exposure to included voices, an audio file with multiple 

speakers could be accurately separated. This opens the door for a lot a more potential “clean data” to 

be used to create more sophisticated speech-specific models. 

Performance: Results were largely positive. With 20–35 seconds of training audio, our model was 

able to distinguish between three speakers of with 63–95% accuracy in our tests. However, 

performance drops severely with 5+ speakers or in uniform gender test groups. 

Github Link: https://github.com/hamzag95/voice-classification 

II. Data Collection 

Background 

One of the greatest challenges in the field of speaker and speech recognition is the lack of open source 

data. Most speech data is either proprietary, hard to access, insufficiently labeled, insufficient in 

amount per speaker, or noisy. In many related research papers, insufficient data has been cited as 

reasoning for not pursuing further, more complex, models and applications. 

We saw this is an opportunity to make a novel contribution to research in this field. Many hours of 

googling later, our team concluded the best sources of potential audio for our project would 

be LibriVox, an extensive source of open domain audiobooks, and YouTube. These sources were 

selected upon best satisfying our criteria shown below. 

 

http://ruder.io/transfer-learning/
https://en.wikipedia.org/wiki/Speaker_diarisation
https://github.com/hamzag95/voice-classification
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https://www.youtube.com/


Audio Source Criteria 

• Enough unique speakers for a model to learn generalizable differences in speech 

• Male and Female speakers, preferably in a range of languages 

• At least 1 hour of audio per speaker available 

• Audio can be automatically labeled with meta-data 

• Audio has minimal noise (little background noise/music, decent quality, few extraneous 

sounds) 

• Open Domain or Creative Commons License for legal use and data set usage 

Scraping Audio from Librivox 

We wrote scripts using BeautifulSoup and Selenium to parse the website LibriVox and download the 

audio books we wanted. BeautifulSoup by itself was not enough, as parts of the website took time (1–2 

seconds) to load. Thus we used selenium to wait until certain elements on the webpage appeared and 

became scrapable. 

 

Our first attempt used a script that moves starts at LibriVox’s default home page and downloads all the 

audio in the page within a certain size file size boundaries. We later realized this was flawed as many 

audiobooks are actually a collaboration of multiple narrators that would be difficult to automatically 



separate. Thus we had to find a way to get audiobooks with unique speakers. Unfortunately, the 

LibriVox API didn’t contain a field to filter by project type (solo or collaboration) or narrator name. 

Instead, we used advanced search to include only “solo” narrator books. Soon we realized it was 

problematic to assume each book had a unique speaker as LibriVox has many repeat narrators. To fix 

this, we had to read the meta-data of each book to maintain a list of scraped narrators to ensure our 

data was correctly labeled. In the end, we had 6000+ unique speakers and links to 24000+ hours of 

audio. However, due to time constraints, we sampled 162 unique speakers for spectrogram conversion. 

The full list of download links can be found on our project GitHub here. 

Scraping Audio from Youtube 

From Youtube, we scraped video links from 7 Youtube stars and their tutorial/informative videos. We 

found that tutorials tended to best fit our standards as they contain mostly clean speech. Selenium was 

needed to automate the process as scraping YouTube requires scrolling. This process can be seen in 

real-time in the video below. 
Scraping videos on Youtube using Selenium 

We didn’t scrape more profiles because it was inefficient to manually filter and verify videos based on 

their inclusion of guest speakers, music, etc…Although tutorial channels generally fit the bill as far as 

speech cleanliness, they were heavily skewed in gender toward males. Videos would also have varying 

qualities of audio and background noise. We decided against using what we collected to train the 

neural net, but thought they would be useful for testing purposes. YouTube remains a source of audio 

with a lot of potential for data collection but very demanding in terms of dating verification and 

cleaning. 

 

 

 

https://github.com/hamzag95/voice-classification/blob/master/data_collection/download_links.txt


III. Data Processing 

Background 

Ultimately, all collected audio had to be converted to 503x800(x3) spectrogram images that captured 5 

seconds of audio. The steps for converting the data collected from Librivox and YouTube were slightly 

different as a result of differing download formats. 

For our various processing needs, we were very fortunate to have tools such as ffmpeg, sox, 

and mp3splt at our disposal that sped up the process while minimizing loss of audio quality. 

YoutTube Audio Processing 

Once the YouTube video links were collected, we were fortunate to find the YouTube-DL library which 

allowed us to easily download our desired videos in WAV format. When attempting to convert this data 

to spectrograms, we came to find that each file was producing two spectrograms because it was stereo 

audio. This is the major difference we encountered versus processing of LibriVox audio. 

 

Thus, the process can be summarized in the points below: 

1. Manually check scraped YouTube Links to verify usability. 

2. Download in all verified links in WAV format and automatically label/sort audio 

https://www.ffmpeg.org/
https://github.com/chirlu/sox
http://mp3splt.sourceforge.net/mp3splt_page/home.php
https://github.com/rg3/youtube-dl


3. Split mono WAV files into 5 seconds segments 

4. Convert all stereo WAV files to mono WAV 

5. Convert all audio segments to Spectrograms 

 

 
YouTube data processing phases. 

A video of the YouTube audio processing can be seen below: 

LibriVox Audio Processing 

We processed the LibriVox audio using a single script that placed the data in various levels of 

processing into different directories so that potential future users could change the segments lengths 

or conversion types as they please. 

The processing can be summarized in the points below: 

1. Combine all downloaded chapters for a single speaker 

2. Trim combined audio to desired length 

3. Convert trimmed audio to 16bit 16khz mono WAV using ffmpeg 

4. Remove silences longer than .5 seconds 

5. Split WAV file in 5 second segments 

6. Convert each segment to a spectrogram 

https://github.com/hamzag95/voice-classification/blob/master/data_collection/AudioBook_DataProcessing.ipynb


 

 
LibriVox data processing stages 

IV. Learning 

Our Model 

We create a CNN by modifying an existing Cifar-10 architecture and train it on spectrograms from 57 

unique speakers. Using this trained neural network, we extract features by removing the last fully 

connected layer and feeding outputs of the flatten layer into an SVM in a process known as transfer 

learning. There was no publicly available pre-trained model for voice classification so we create and 

train our own neural network. 

 

CNN Architecture 

The green layers in our architecture are convolutional layers whereas the blue layers max pooling. For 

all convolutional layers we use a 3x3 kernel. For the max pooling we use a pool size of 2x2. We use relu 

activation functions between each layer and a softmax activation function for the last layer. Our loss 

function is categorical cross-entropy. 

https://github.com/hamzag95/keras/blob/master/examples/cifar10_cnn.py


 
Modified Cifar-10 Architecture 

CNN Training 

When trained on 6 different people, the neural network is 97% accurate. Each of the 6 people had 

about an hour of audio that the CNN was trained on. After our data scraping and processing is done for 

a larger dataset of 162 different speakers, we trained our neural network on 57 different speakers due 

to time constraints on training and storage space on AWS. We trained each of the 57 speakers on 45 

min worth of audio ( ~2700 seconds). After one epoch our CNN is 97% accurate. The CNN took about 

an and hour and a half to train on ~24000 spectrogram images. 

 



SVM and Transfer Learning 

We now have have a decent neural network at identifying 57 different people. We cut off the last layer 

which is a dense layer classifying 57 people, and use the flatten layer to feed into an SVM. SVMs are 

supposed to perform well with smaller amounts of data (compared to a neural network) and with high 

dimensions. Using our CNN as a feature extractor we have data in ~400,000 dimensions. We use a 

radial basis function as the kernel for the SVM. 

Using 35 seconds of audio for training on 3 different speakers and testing on 35 seconds results in 95% 

accuracy. Feeding into the SVM we see that with 15 seconds training for each of 3 different speakers 

and testing on 15 seconds for each speaker, our SVM results in an accuracy of 83%. We see that we are 

able to learn someone’s voice in 15–20 seconds now as opposed to 45 minutes of audio. 

More Examples and Results 

All our examples will try to differentiate between three new voices. 

When we first tested the SVM we tested it on three YouTubers with 7 samples for each the training and 

test set. We had an accuracy of 95%. 

The indices correspond to a specific person. The array in this example is set up such; 

[ Christen Dominique, Tushar, Sriraj Raval] 

An output of 0 is Christen (Female) , 1 is Tushar (Male) and 2 is Sriraj (Male). 

 

https://www.youtube.com/user/christendominique
https://www.youtube.com/user/tusharroy2525
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A


We see here that the model never misclassifies Christen, but classified Sriraj as Tushar for one sample. 

For future testing we tried to minimize number of samples for training to about 5 samples. The 

number of times the a person name occurs in the array is how many samples there were for the test set. 

For testing our program we made an interface where we record speakers and create a test and train set. 

We use this program to run live demos and test on real people, not just scraped data. 

Additionally our classifier is language agnostic; it can recognize your voice independent of language. 

The order a name appears in the array is the index the classifier predicts as the person speaking. The 

first array seen is the prediction and the second array is the true speaker. 

Below are the results of a few live tests of our model. 

When doing the live demo in our class, learning three people’s voices, two males and one female, we 

reached 63% accuracy. This was based on 5 samples for training and 3 samples for testing. Below is an 

example of the in class demo we did. (0 → caramanis, 1 → dimakis, 2 → monica) 

 
In class live demo with our professors and teaching assistant with some mixed language 

Another example consisted of two males and one female voice, where all switched between english and 

a respective different foreign language (Spanish, Arabic and Urdu). Our model was 90% accurate. 

 
Demo among friends mixing english and their native languages 

Here is another example with 86% accuracy. 

 
Demo among friends in purely english 



Results were generally positive! Testing on groups of 3 with differing genders generally yields accuracy 

of 60–90%. However, our model does have limitations. Performance declines when tested on groups of 

entirely the same gender or as group size increases. Testing of groups of uniform genders generally 

yields accuracy of 40–60%. Accuracy nears that of a random guess as group size surpasses 6. 

V. Conclusion 

Summary 

We wanted to create a model to identify speakers with only a few sentences of training data. We chose 

to approach this by using existing image classifying architectures, representing audio using 

spectrograms. This included a significant data collection component, leading us to create a dataset of 

162 speakers included segmented audio files and segmented spectrograms. We chose to use take a 

transfer learning approach, training a derivative of the Cifar-10 CNN, and extracting features to feed an 

SVM to classify new speakers. We restricted our training data to 20–35 seconds per person (4–7 

samples). This method brought surprising levels of accuracy (60–90%) for groups of 3 with differing 

genders. Results were less impressive for uniformly gendered groups, but consistently much better 

than random guesses. 

Contributions 

Following the goals we set upon starting this project, our team successfully managed to make original 

contributions to this area of research. We managed to create an extremely large set of audio download 

links for unique speakers in a field where lack of open source data is a common hurdle to research 

projects. Again, this list of links can be found here. Additionally, our approach of using image 

recognition in conjunction with transfer learning with an SVM for audio data has not been heavily 

explored. It is our hope that our architecture and methods may be useful to future research. 

Note: Link to full data set including audio and spectrograms coming soon… 

 

https://github.com/hamzag95/voice-classification/blob/master/data_collection/download_links.txt


Future Changes/Improvements 

A lot of roadblocks for this project consisted of time and computer resources such as storage and 

computing power. Below are possible future steps for our team or someone else wanting to improve 

what we have worked on 

First would be access to more storage so we can train our neural network on 4 hours of audio per 

person and use all 162 speakers we scraped. We believe that this will make for an even better feature 

extractor to feed into the SVM. 

Second, do some feature selection before feeding the features into the SVM. Even though SVMs with 

nonlinear kernels are resistant to over-fitting, having so many features with so few samples may have 

resulted in over-fitting, which may explain the high variance in accuracy scores. With more time, we 

would have done more experimentation with the architecture of the neural network, specifically adding 

another dense layer before the classification layer. This would reduce the input to the SVM from 

~400,000 features to whatever we set as the number of nodes in the new dense layer. Another 

architecture to explore would be basing a model on VGG19. 

Third, would be to scrape more speakers. We are able to scrape 6000+ unique speakers from LibriVox, 

although this takes time to download and preprocess data and a ridiculous amount of storage. We 

would try to scrape about 500–1000 and use about 30–45 min. of audio per person to see how this 

improves our feature extractor. This would take a lot of time to train. For reference 57 speakers with 45 

min. of audio took an hour and a half to train. 

 

 

 



 

https://medium.com/hackernoon/hello-from-the-mobile-side-tensorflow-lite-in-speaker-recognition-7519b18c2646 

 “Hello,” from the Mobile Side: TensorFlow Lite in Speaker Recognition 

The Alibaba tech team explored a new approach to voice recognition on mobile, 

addressing main challenges in this field 
 

Voice biometrics, or voiceprints, are already used by banks such 

as Barclays and HSBC to verify customer identity. As the technology improves, it 

will likely find further applications within banking and security. Speaker 

recognition may also find applications within surveillance criminal investigations. 

Despite this potential of the technology, there are still many challenges to 

overcome in the field. Currently most speaker recognition takes place on the 

server side. The Alibaba tech team proposes a solution using TensorFlow Lite on 

the client side, to address many of the common issues with the current model 

through machine learning and other optimization measures. 

Issues with a Server-side Model: 

With most speaker recognition currently taking place on the server side, the 

following issues are all too common: 

· Poor network connectivity 

· Extended latency 

https://medium.com/hackernoon/hello-from-the-mobile-side-tensorflow-lite-in-speaker-recognition-7519b18c2646
https://www.telegraph.co.uk/technology/news/10044493/Say-goodbye-to-the-pin-voice-recognition-takes-over-at-Barclays-Wealth.html
https://www.theguardian.com/business/2016/feb/19/hsbc-rolls-out-voice-touch-id-security-bank-customers


· Poor user experience 

· Over-extended server resources 

Alibaba’s Client-side Alternative: 

To address these issues, the Alibaba tech team decided to implement speaker 

recognition on the client side, and to use machine learning to optimize speaker 

recognition. 

This solution came with its own fair share of challenges. Implementing speaker 

recognition on the client side is time-consuming, and multiple optimizations are 

needed in order to offset this. The Alibaba tech team devised ways to: 

· Optimize results with machine learning 

· Accelerate computation 

· Reduce time-consuming operations 

· Reduce preprocessing time 

· Filter out non-essential audio samples 

· Remove unnecessary computing operations 

The methods proposed by the Alibaba tech team make up a set of solutions which 

can help to address the challenges encountered by speaker recognition 

technology. 



Defining Speaker Recognition 

Scenarios 

Voice recognition can be usefully applied in many scenarios, including: 

1) Media quality analysis: recognize human voices, silence in call, and 

background noises. 

2) Speaker recognition: verify a voice for phone voice unlock, remote voice 

identification, etc. 

3) Mood recognition: identify the speakers mood and emotional state. When 

combined with a person’s voiceprint, the content of what is being said, mood 

recognition can add to security and prevent voiceprint counterfeiting and 

imitation. 

4) Gender recognition: distinguish whether a speaker is male or female. This is 

another tool which can be useful to help confirm speaker identity. 

Process 

Training and prediction are the two main stages of speaker recognition. The 

training stage sets up a compute model with the old data, and the prediction gives 

the reference result on current data with the model.. 

Training can be further divided into three steps: 

1) Extract audio features with Mel-frequency cepstrum algorithm. 



2) Mark human voices as positive and non-human samples as negative. Train the 

neural network model with these samples. 

3) Use the final training results to create the prediction model for mobile. 

In short, the training flow is feature extracting, model training and mobile model 

porting. For prediction, the flow is extract the voice feature, run the mobile model 

with the feature, and get the final predict result. 

Artificial Intelligence Framework 

The launch of TensorFlow Lite was announced at the Google I/O annual 

developer conference in November 2017. TensorFlow Lite is a lightweight solution 

for mobile and embedded devices, and supports running on multiple platforms, 

from rackmount servers to small IoT devices. 

With the widespread use of machine learning models, there has been a demand to 

deploy TensorFlow Lite on mobile and embedded devices. Fortunately, 

TensorFlow Lite allows machine learning models to run on devices with low 

latency inference. 

Tensorflow Lite is an AI learning system from Google. Its name derives from its 

operating principles. Tensor means N-dimensional array, flow implies calculation 

based on data flow graphs. TensorFlow refers to the calculation process of tensor 

flowing from one end of the data flow graph to the other. TensorFlow is a system 

that transmits complex data structures to AI neural networks for analysis and 

processing. 

The following figure shows the TensorFlow Lite data structure : 



 
TensorFlow Lite architecture diagram 

Mel-Frequency Cepstrum Algorithm 

Algorithm introduction 

For this solution, the Alibaba tech team uses the Mel-frequency cepstrum 

algorithm. The algorithm is used for speaker recognition. Using the algorithm 

contains the following steps: 

1) Input sound files and resolve them to original sound data (time domain signal). 

2) Convert time domain signals to frequency domain signals through short-time 

Fourier transform, windowing and framing. 



3) Turn frequency into a linear relationship that humans can perceive through 

Mel spectrum transform. 

4) Separate the DC component from the sine component by adopting DCT 

Transform through Mel cepstrum analysis. 

5) Extract sound spectrum feature vectors and convert them to images. 

The purpose of windowing and framing is to ensure the short-term stationary 

character of the speech in the time domain. Mel spectrum transform is used to 

translate human auditory perception of frequency into a linear relationship. Mel 

cepstrum analysis is used to understand Fourier transform, through which, any 

signal can be decomposed into the sum of a DC component and a number of sine 

signals. 

 
The Mel-frequency cepstrum algorithm implementation process 

 

 

 



Short-time Fourier transform 

 
Time domain sound signals 

 
Frequency domain sound signals 



The sound signal is a one-dimensional time domain signal. It is difficult to find 

the rule of how the frequency changes. If we convert the sound signal to frequency 

domain via Fourier transform, it will show the signal frequency distribution. But 

at the same time, its time domain information will be missing, making it 

impossible to see the change of frequency distribution over time. Many joint time-

frequency analysis methods have emerged to solve this problem. Short-time 

Fourier transform, wavelet, and Wigner distribution are all frequently-used 

methods. 

 
FFT transform and STFT transform. 

The signal spectrum can be obtained via Fourier transform and can be widely 

utilized. For example, signal compression and noise reduction can both be based 

on the spectrum. However, Fourier transform is built upon an assumption that 

the signal is stationary, that is, that the statistical properties of the signal do not 

change over time. However, the sound signal is not stationary. Over a long period 

of time, there are many signals that will appear and then disappear immediately. 

If all the signals are Fourier transformed, the change of sound over time cannot be 

reflected accurately. 



The short-time Fourier transform (STFT) used in this article is the classic joint 

time-frequency analysis method. Short-time Fourier transform (STFT) is a 

mathematical transformation associated with the Fourier transform (FT) to 

determine the frequency and phase of a sine wave in a local region of the time-

varying signal. 

The concept of short-time Fourier transform (STFT) is to first choose a window 

function with time-frequency localization, then assume that the analysis window 

function h (t) was stationary over a short time, which ensures f (t) h (t) is a 

stationary signal within different finite time widths. Finally, calculate the power 

spectrum at various moments. STFT uses fixed window functions, the most 

commonly used of which include the Hanning window, the Hamming window, 

and the Blackman-Haris window. The Hamming window, a generalized cosine 

window, is used in the solutions in this article. The Hamming window can 

efficiently reflect the attenuation relationship between energy and time at a 

certain moment. 

The STFT formula in this article takes the original Fourier transform formula, 

 

and adds a window function to it, creating the following updated STFT formula: 

 



The following is a Hamming window function: 

 

 
STFT transform based on the Hamming window 

Mel Spectrum 

Spectograms are usually in the form of a large map. In order to turn the sound 

features into a suitable size, they often need to be transformed into Mel spectrum 

via Mel scale filter bank. 

Mel scale 

The Mel scale was named by Stevens, Volkmann, and Newman in 1937. It is 

known that the unit of frequency is Hertz (Hz) and the frequency range of human 

hearing is 20–20000 Hz. 

But human auditory perception does not relate to scale units such as Hz in a 

linear manner. For example, if we have adapted to a 1000Hz tone, then when tone 

frequency is increased to 2000Hz, our ears could only perceive that the frequency 

may be increased by a little, and we would never realize that the frequency had 

doubled. The mapping for converting an ordinary frequency scale to Mel-

frequency scale is as follows: 



 

The above formula changes the frequency so that it has a linear relationship with 

human auditory perception. That is to say, if one Mel scale frequency is the double 

of another Mel scale frequency, human ears could perceive that one frequency is 

roughly the double of the other. 

Since there is a log relationship between Hz and Mel frequency, if the frequency is 

low, Mel-frequency will change rapidly with Hz; if the frequency is high, Mel-

frequency will change slowly. This shows that human ears are sensitive to low 

frequency sounds and less responsive to high frequency sounds. This rule forms 

an important basis for the Mel scale filter bank. 

 
Frequency transforms to Mel frequency 

The figure below shows 12 triangular filters forming a filter group. This filter 

group features dense filters and high threshold in the low frequency zone, as well 



as sparse filters and low threshold in the high frequency zone. This aligns well 

with the fact that human ears are less responsive to sounds of higher frequency. 

Mel-filter banks with same bank area, a form of filters shown in the figure above, 

are widely used in fields such as speech and speaker recognition. 

 
Mel filter bank 

Mel-Frequency Cepstrum 

The result of applying DCT transformation to the Mel log spectrum to separate 

components of DC signal and sine signals is the Mel-frequency cepstrum (MFC). 

 

 

 



Optimizing algorithm processing speed 

Since the algorithm is designed to be used on the client side, fast processing is 

required. The following steps can be taken to optimize algorithm processing 

speed. 

1) Instruction set acceleration: The algorithm features many matrix addition 

and matrix multiplication operations. The ARM instruction set is introduced to 

accelerate operations. It can increase the speed by 4–8 times. 

2) Algorithm acceleration: 

a) Select vocal frequency range (20HZ~20KHZ) and filter out input outside the 

non-vocal frequency range to reduce redundant computation. 

b) Lower the audio sampling rate to reduce unnecessary data computation. This 

is possible because human ears are insensitive to sampling rates that are too 

high. 

c) Cut windows and sections reasonably to avoid excessive computation. 

d) Detect silent sections so that unnecessary sections can be deleted. 

3) Sampling frequency acceleration: If radio sampling frequency is too high, 

choose down sampling and set the highest sampling frequency to 32 kHz. 

4) Multi-thread acceleration: Divides audios into multiple fragments 

concurrently processed by multi-threads. The number of threads depends on the 

machine capacity. The default setting is four threads. 



 
Algorithm parameters selected by the engineering team 

Speaker Recognition Models 

Model selection. 

Convolutional Neural Networks (CNN) are a type of feedforward neural network. 

CNN networks contain artificial neurons that can respond to some of the neurons 

in their field. This type of neural network is highly suitable for processing large 

images. 

In the 1960s, while studying neurons in the cerebral cortices of cats that aid in 

local sensing and direction selection, Hubel and Wiesel found unique cellular 

structures that could be used to simplify feedback neural networks. This led them 

to propose the CNN concept. CNNs have become a hot spot in many research 

fields, particularly in modal classification. 

CNNs owe part of their popularity to their ability to skip complex pre-processing 

of images and allow direct import of original images. The first CNN-like network 

was the neocognitron proposed by K.Fukushima in 1980. Since then, multiple 

researchers have worked to improve the CNN model. Among the most significant 

of these efforts has been the work on improved cognition proposed by Alexander 

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf


and Taylor. This research on improved cognition combines the strengths of 

various approaches and avoids time-consuming error back propagation. 

In general, CNN structure is made up of two fundamental layers. One of these 

layers is the feature extraction layer. In this layer, each neuron’s input is 

connected to the local accepted domain of the previous layer and extracts the 

features of this local domain. Once extracted, the positional relation of this local 

domain feature to other features is fixed. 

The other is the feature mapping layers which gather to form every computing 

layer of the network. Each feature mapping layer is a surface in which all neurons 

have the same weight. Using functions with small influence function kernels, such 

as sigmoid and relu as the activation function of CNN, the feature mapping 

structure ensures constant displacement of feature mapping. The number of free 

network parameters is reduced, since neurons on the same mapping surface share 

the same weight. In CNN, every convolutional layer is closely followed by a 

computing layer that is used to obtain local averages and secondary extraction. 

This specific secondary feature extraction reduces feature resolution. 

CNN is used mainly to recognize 2D images that are modified but not deformed, 

such as images which have been zoomed in on. Since CNN’s feature detection 

layer learns implicitly through training data, using CNN can avoid the need for 

explicit feature extraction. 

CNN can also learn concurrently, as it places the same weight for neurons across 

the same feature mapping surface. This gives CNN another big advantage over 

networks in which neurons are inter-connected. Local weight sharing gives CNN a 

unique advantage in speech recognition and image processing. In terms of layout, 

CNN is closer to actual biological neural networks. Weight sharing ensures a less 



complex network and CNN does not have to handle the complexity of data 

reconstruction during feature extraction and classification, since images of multi-

dimensional input vectors can be directly imported into the network. 

 
 

 

 

Inception-v3 model 

The accurate Inception-v3 model is used in this article as the speaker recognition 

model. Decomposition is one of the most important improvements of the v3 

model. 7x7 CNNs are decomposed into 2 one-dimensional convolutions (1x7, 7x1), 

and 3x3 CNNs are also decomposed into two convolutions (1x3,3x1). This 

accelerates computation, further deepens the network, and makes it more non-

linear. The v3 model network input is upgraded from 224x224 to 299x299, and 

the design of the modules 35x35/17x17/8x8 are improved. 

Using a TensorFlow session enables modules to realize training and prediction at 

the code layer. The TensorFlow official website provides details of how to use a 

TensorFlow session. 



 
Using a TensorFlow session 

Model example. 

In monitored machine learning, samples are typically divided into three sets: 

· The train set: This set is used to estimate models. It learns the sample data sets 

and builds a classifier by matching some parameters. It creates a classification 

manner used to train models. 

· The validation set: This set is used to determine the network structure or 

control parameters that control model complexity. It adjusts the classifier 

parameters of models obtained through learning, such as choosing to hide the 

number of units in neural networks. The validation set is also used to determine 

the network structure or parameters that control the complexity of models, in an 

attempt to avoid overfitting of models. 

· The test set: This set is used to check how the finally selected optimal model 

performs. It is mainly used to test the recognition capacity (such as the 

recognition rate) of trained models. 



The Mel Frequency Cepstrum algorithm described in the second chapter can be 

used to obtain speaker recognition as sample files. Sounds within the human vocal 

spectrum as positive samples, animal sounds and other non-human noises are 

used as negative samples. These samples are then used to train the Inception-v3 

model. 

With TensorFlow as the training frame, this article takes 5000 human vocal 

samples and 5000 non-human vocal samples as the test sets, and 1000 samples as 

the validation set. 

Model training. 

Once samples are ready, they can be used to train the Inception-v3 model. The 

convergence of the trained model can generate the pb model usable on the client. 

In model selection, choose compiling armeabi-v7a or a later version, and NEON 

optimization is enabled by default. In other words, opening the macro of 

USE_NEON can accelerate instruction sets. More than half of the operations in a 

CNN take place at convolutions, so instruction set optimization can speed up 

operations by at least four times. 

 
Convolution processing function 

The toco tool provided by TensorFlow can then be used to generate a lite model 

which can be directly called by the TensorFlow Lite frame on the client. 



 
Toco calling interface. 

Model prediction. 

MFC can be used to extract vocal sound file features and generate prediction 

images. Using the lite prediction model generated in training produces the 

following results: 

 
Model prediction result 

Conclusion 
The methods proposed above can help to address some of the most difficult 
challenges in the speaker recognition field today. Using TensorFlow Lite on the 
client side is a useful innovation that helps leverage machine learning and 
learning and neural networks to drive the technology forward to further progress. 

(Original article by Chen Yongxin陈永新) 
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Track who’s speaking with Speaker Diarization aka Speaker-Recognition 

https://medium.com/vmacwrites/track-whos-speaking-with-speaker-diarization-2e3eac2de2c3 

Distinguishing between two speakers in a conversation is difficult especially when you are hearing 

them virtually or for the first-time. Same can be the case when multiple voices interact with 

AI/Cognitive systems, virtual assistants, and home assistants like Alexa or Google Home. To overcome 

this, Watson’s Speech To Text API has been enhanced to support real-time speaker ‘diarization.’ 
 

IBM Watson 

Post building a popular chatbot using Watson services called “WatBot”, there are a couple of requests 

to include SpeakerLabels setting into our code sample. 

So, what is Speaker Diarization? 

Speaker diarization (or diarization) is the process of partitioning an input audio stream into 

homogeneous segments according to the speaker identity. It can enhance the readability of an 

automatic speech transcription by structuring the audio stream into speaker turns and, when used 

together with speaker recognition systems, by providing the speaker’s true identity. 

https://medium.com/vmacwrites/track-whos-speaking-with-speaker-diarization-2e3eac2de2c3
http://vidyasagarmsc.com/adding-watson-speech-to-text-to-your-android-app/
http://vidyasagarmsc.com/an-android-chatbot-powered-by-ibm-watson/


 

Real-time Speaker Diarization with Watson Speech-to-Text API 

Why Speaker Diarization? 

Real-time speaker diarization is a need we’ve heard about from many businesses across the world that 

rely on transcribing volumes of voice conversations collected every day. Imagine you operate a call 

center and regularly take action as customer and agent conversations happen — issues can come up 

like providing product-related help, alerting a supervisor about negative feedback, or flagging calls 

based on customer promotional activities. Prior to today, calls were typically transcribed and analyzed 

after they ended. Now, Watson’s speaker diarization capability enables access to that data immediately. 

To experience speaker diarization via Watson speech-to-text API on IBM Bluemix, head to 

this demo and click to play sample audio 1 or 2. If you check the input JSON below; we are setting 

“speaker_labels” optional parameter to true. This helps us in distinguishing between speakers in a 

conversation. 
{ 

 "continuous": true, 

 "timestamps": true, 

 "content - type": "audio / wav", 

 "interim_results": true, 

 "keywords": ["IBM", "admired", "AI", "transformations",         "cognitive", 

https://speech-to-text-demo.mybluemix.net/


"Artificial Intelligence", "data", "predict", "learn"], 

  

 "keywords_threshold": 0.01, 

 "word_alternatives_threshold": 0.01, 

 "smart_formatting": true, 

 "speaker_labels": true, 

 "action": "start" 

} 

A part of output JSON after real-time speech-to-text conversion: 
{ 

.... 

 “confidence”: 0.927, 

 “transcript”: “So thank you very much for coming Dave it’s good to have you 

here. “ 

}], 

“final”: true, 

“speaker”: 0 

} 

You can see that a speaker label is getting assigned to each speaker in the conversation. 
Steps to enable speaker diarization 

• Watson speech-to-text is available as a service on Bluemix, IBM Cloud platform. Create 
now to leverage the service in your application. 

• If you are taking the Rest API approach, don’t forget to include the optional parameter 
“speaker_labels: true” in your request JSON. 

• Based on the programming language your application is created, use any of the SDKs 
available on Watson Developer Cloud ranging from Python, Node, Java, Swift etc., 

Refer WatBot repository to get a gist of how to enable or add speaker diarization to an existing android 
app. Similarly, you can use other SDKs to achieve speaker diarization. 
Note: Speaker labels are not enabled by default. Check ToDos in the code to uncomment. 
Use cases 
From integrating into chatbots to interacting with home assistants like Alexa, Google Home etc., From 
call centers to medical services. The possibilities are endless. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://bluemix.net/
https://github.com/watson-developer-cloud
https://github.com/VidyasagarMSC/WatBot


Speaker Recognition using Deep Learning 

https://medium.com/@yaduvanshiharsh15/speaker-recognition-using-deep-learning-890fe812a976 

 

Photo by Markus Spiske on Unsplash 

Introduction 

In today’s digital era, voice-based interactions have become increasingly prevalent. From voice 

assistants like Siri and Alexa to authentication systems and security applications, accurately identifying 

and recognizing speakers plays a pivotal role in enhancing user experiences and ensuring secure 

access. This is where speaker recognition, a fascinating field at the intersection of artificial intelligence 

and signal processing, comes into play. 

For starters, speaker recognition can be understood as a technique to recognize who is speaking. It is 

sometimes also known as voice recognition, voiceprint recognition, or talker recognition. However, it’s 

important not to confuse speaker recognition with speech recognition. While both involve 

the analysis of speech signals, the former is concerned with identifying the individual behind the voice, 

whereas the latter focuses on transcribing and understanding the content of the spoken words. 

Traditionally, speaker recognition relied on statistical modeling techniques such as Gaussian Mixture 

Models (GMM) and Hidden Markov Models (HMM). While these methods have served their purpose, 

recent advancements in deep learning have revolutionized the field, enabling more accurate and robust 

speaker recognition systems. 

In this article, we delve into the world of speaker recognition using deep learning. We explore the 

underlying principles, methodologies, and techniques that empower these systems to decipher the 

unique characteristics of individual voices. From data preparation and model architectures to training 

strategies and evaluation metrics, we aim to provide a comprehensive overview of the key components 

involved in developing effective speaker recognition systems. 

https://medium.com/@yaduvanshiharsh15/speaker-recognition-using-deep-learning-890fe812a976
https://unsplash.com/@markusspiske?utm_source=medium&utm_medium=referral
https://unsplash.com/?utm_source=medium&utm_medium=referral


Data Preparation 

One of the key ingredients for developing a successful speaker recognition model is a high-quality 

dataset. In our case, we utilized the widely acclaimed LibriSpeech Automatic Speech Recognition 

(ASR) corpus. This dataset offers a rich collection of audio recordings encompassing a diverse range of 

speakers and speech content. 

The LibriSpeech dataset comprises approximately 1500 books, recorded by 251 different speakers. 

Each audio file in the dataset is in the FLAC format, ensuring lossless compression and maintaining 

the fidelity of the speech signals. To maintain consistency and facilitate organization, the dataset 

follows a specific naming convention for each audio file. For example, consider the file named 103-

1240-0000.flac. Here, the speaker ID is "103," the book ID is "1240," and the utterance ID is 

"0000." An utterance represents an audio clip of a speech signal, typically corresponding to a sentence 

or a phrase spoken by the speaker. 

To begin building our model, the first step is to create a dictionary that associates each speaker with 

their corresponding utterances within the training dataset. We will refer to this dictionary 

as speaker_to_utterance. By organizing the data in this manner, we establish a clear mapping 

between speakers and their audio files, enabling efficient data retrieval during training and evaluation. 

Let’s take a look at a code snippet that demonstrates this data preparation step: 

def get_librispeech_speaker_to_utterance(data_dir): 

    speaker_to_utterance = dict() 

    flac_file = glob.glob(os.path.join(data_dir, "*", "*", "*.flac")) 

 

    for file in flac_file: 

        speaker_id = file.split("\\")[-3] 

        utterance_id = file.split("\\")[-1].split(".")[0] 

        if speaker_id not in speaker_to_utterance: 

            speaker_to_utterance[speaker_id] = [] 

        speaker_to_utterance[speaker_id].append(file) 

    return speaker_to_utterance 

https://www.openslr.org/12
https://www.openslr.org/12


In this code snippet, we traverse through the directory structure of the training dataset, iterating over 

each speaker, chapter, and audio file. We extract the necessary information, such as the speaker ID and 

utterance ID, and store the corresponding file path in the speaker_to_utterance dictionary. At the 

end of the process, we obtain a comprehensive dictionary containing all the speakers in the dataset as 

keys, and their respective audio file locations as values. In our case, this dictionary will consist of a 

total of 251 unique speakers. 

Data Processing: Feature Extraction 

In speaker recognition, one of the commonly used techniques is the Triplet loss, which we will also 

employ in our model. With Triplet loss, our input consists of three segments: an anchor, a positive, and 

a negative. The anchor and positive segments belong to the same speaker, while the negative segment 

belongs to a different speaker. We will delve into the details of triplet loss later in the article. 

Now that we understand the structure of our input, let’s focus on converting the audio files in FLAC 

format into features that our model can process effectively. For this purpose, we will utilize Mel-

Frequency Cepstral Coefficients (MFCC). While there are other feature extraction techniques 

available, such as Perceptual Linear Prediction (PLP), Perceptual Non-Linear Cepstral Coefficients 

(PNCC), and Linear Frequency-Based Energies (LFBE), we will opt for MFCC in our case due to its 

robustness in handling noise through logarithmic compression. 

def get_triplet(spk_to_utts): 

    """Get a triplet of anchor/pos/neg samples.""" 

    pos_spk, neg_spk = random.sample(list(spk_to_utts.keys()), 2) 

    while len(spk_to_utts[pos_spk]) < 2: 

        pos_spk, neg_spk = random.sample(list(spk_to_utts.keys()), 2) 

    anchor_utt, pos_utt = random.sample(spk_to_utts[pos_spk], 2) 

    neg_utt = random.sample(spk_to_utts[neg_spk], 1)[0] 

    return (anchor_utt, pos_utt, neg_utt) 

The get_triplet function randomly selects two different speakers, one for the positive segment and 

another for the negative segment, from the provided spk_to_utts dictionary. It ensures that the 



positive speaker has at least two utterances available. Then, it randomly selects one utterance each 

from the positive speaker for the anchor and positive segments. Additionally, it randomly selects one 

utterance from the negative speaker for the negative segment. The function returns a triplet containing 

the paths of the anchor, positive, and negative utterances. 

def extract_features(audio_file): 

    """Extract MFCC features from an audio file, shape=(TIME, MFCC).""" 

    waveform, sample_rate = soundfile.read(audio_file) 

 

    if len(waveform.shape) == 2: 

        waveform = librosa.to_mono(waveform.transpose()) 

 

    if sample_rate != 16000: 

        waveform = librosa.resample(waveform, sample_rate, 16000) 

 

    # Mel-frequency cepstral coefficients (MFCCs) are robust to noise bcoz of logarithmic 

compression 

    features = librosa.feature.mfcc(y=waveform, sr=sample_rate, n_mfcc=myconfig.N_MFCC) 

    # the shape of features will be 40 X 441, where 40 represent featues where as 441 

represent frames 

 

    return features. Transpose() 

The extract_features function takes an audio file as input and extracts Mel-

frequency cepstral coefficients (MFCCs) as features. It first reads the waveform 

and sample rate from the audio file using the soundfile.read function. If the 

waveform has two channels, it converts it to mono by taking the average of the 

channels. If the sample rate is not 16000 Hz, it resamples the waveform to have a 

sample rate of 16000 Hz. 

The MFCC features are then computed using the librosa.feature.mfcc function, 

which takes the waveform, sample rate, and the number of desired MFCC 

coefficients as input. The resulting features are in the shape of a matrix, where 

each row represents a feature, and each column represents a frame. The matrix is 

transposed before being returned. 



Model Architecture 

In order to process continuous audio signals effectively, an LSTM (Long Short-

Term Memory) architecture is chosen for the speaker recognition model. LSTMs 

are well-suited for capturing long-term dependencies in sequential data such as 

audio. In this architecture, a bidirectional LSTM with three stacked LSTM layers 

is utilized to enhance the model’s performance in capturing temporal patterns. 

The model implementation is shown below using the PyTorch framework 

class LstmSpeakerEncoder(BaseSpeakerEncoder): 

    def __init__(self, saved_model=""): 

        super(LstmSpeakerEncoder, self).__init__() 

        self.lstm = nn.LSTM( 

            input_size=myconfig.N_MFCC,     # Number of MFCC coefficients (40) 

            hidden_size=myconfig.LSTM_HIDDEN_SIZE,     # Number of hidden units in each 

LSTM layer (64) 

            num_layers=myconfig.LSTM_NUM_LAYERS,     # Number of stacked LSTM layers (3) 

            batch_first=True, 

            bidirectional=myconfig.BI_LSTM     # Whether to use a bidirectional LSTM 

(True/False) 

        ) 

        if saved_model: 

            self._load_from(saved_model) 

 

    def _aggregate_frames(self, batch_output): 

        if myconfig.FRAME_AGGREGATION_MEAN: 

            return torch.mean(batch_output, dim=1, keepdim=False) 

        else: 

            return batch_output[:, -1, :] 

 

    def forward(self, x): 

        D = 2 if myconfig.BI_LSTM else 1 

        h0 = torch.zeros(D * myconfig.LSTM_NUM_LAYERS, x.shape[0], 

myconfig.LSTM_HIDDEN_SIZE).to(myconfig.DEVICE) 

        c0 = torch.zeros(D * myconfig.LSTM_NUM_LAYERS, x.shape[0], 

myconfig.LSTM_HIDDEN_SIZE).to(myconfig.DEVICE) 

        y, (hn, cn) = self.lstm(x, (h0, c0)) 

        return self._aggregate_frames(y) 

The core component of the architecture is the self.lstm layer, which is an LSTM 

module from PyTorch's nn module. It is configured with an input_size equal to the 

number of MFCC coefficients (myconfig.N_MFCC), a hidden_size of the LSTM units 

(myconfig.LSTM_HIDDEN_SIZE), a number of num_layers specifying the stacked LSTM 



layers (myconfig.LSTM_NUM_LAYERS), and whether it is bidirectional 

(myconfig.BI_LSTM). 

During the forward pass, the input x is passed through the LSTM layer. The initial 

hidden state h0 and cell state c0 are initialized as tensors of zeros with appropriate 

dimensions. The output y and final hidden and cell states hn and cn are obtained 

from the LSTM layer. The _aggregate_frames function is then used to aggregate the 

output frames of the LSTM layer into a fixed-length representation, depending on 

the value of myconfig.FRAME_AGGREGATION_MEAN. The aggregated output represents 

the speaker embedding for the input audio sequence. 

Overall, this model architecture employs a bidirectional LSTM with three stacked 

LSTM layers for effective speaker recognition from continuous audio signals. 

Model Training 

def train_network(speaker_to_utterance, num_steps, saved_model="", pool=None): 

    losses = [] 

    start_time = time.time() 

    encoder = get_speaker_encoder_LSTM() 

 

    #Train 

    optimizer = torch.optim.Adam(encoder.parameters(), lr=myconfig.LEARNING_RATE) 

    print("Start training") 

    for step in range(num_steps): 

        optimizer.zero_grad() 

 

        #build batch input 

        batch_input = feature_extraction.get_batched_triplet_input(speaker_to_utterance, 

myconfig.BATCH_SIZE, pool) 

        batch_output = encoder(batch_input)     #batch_output.shape=[24,64*2] 

        loss = get_triplet_loss_from_batch_output(batch_output, myconfig.BATCH_SIZE) 

        loss.backward() 

        optimizer.step() 

        losses.append(loss.item()) 

        print(f"step: {step}/{num_steps} loss: {loss.item()}") 

 

    #     saving model 

        if saved_model is not None and (step + 1) % myconfig.SAVE_MODEL_FREQUENCY == 0: 

            checkpoint = saved_model 

            if checkpoint.endswith(".pt"): 

                checkpoint = checkpoint[:-3] 

            checkpoint += ".ckpt-" + str(step + 1) + ".pt" 

            save_model(checkpoint,encoder, losses, start_time) 



 

    training_time = time.time() - start_time 

    print("Finished training in", training_time, "seconds") 

    if saved_model is not None: 

        save_model(saved_model, encoder, losses, start_time) 

    return losses 

To train the LSTM-based speaker recognition model, the following steps are 

performed: 

1. Initializing the encoder: The speaker encoder is initialized using 

the get_speaker_encoder_LSTM() function, which retrieves the LSTM-based 

speaker encoder defined in the previous section. 

2. Defining the optimizer: The Adam optimizer is used for training the 

model. It is instantiated with the parameters of the encoder, and the 

learning rate is set to myconfig.LEARNING_RATE. 

3. Training loop: The training loop iterates over num_steps, which represents 

the total number of training steps. In each iteration, the optimizer's 

gradient is zeroed (optimizer.zero_grad()) to clear any accumulated 

gradients from the previous iteration. 

4. Batch input preparation: 

The feature_extraction.get_batched_triplet_input() function is used to 

construct a batch of triplet inputs from 

the speaker_to_utterance dictionary. This function selects random 

anchor, positive, and negative utterances belonging to different speakers 

and forms a batch input. The batch size is determined 

by myconfig.BATCH_SIZE. 

5. Forward pass and loss calculation: The batch input is passed through the 

encoder (encoder(batch_input)) to obtain the batch output, which 

represents the speaker embeddings. The triplet loss is computed using 



the get_triplet_loss_from_batch_output() function, which calculates the 

loss based on the batch output and the batch size (myconfig.BATCH_SIZE). 

6. Backpropagation and parameter update: The loss is backpropagated 

through the model (loss.backward()) to compute the gradients of the 

model parameters. The optimizer then performs a parameter update 

(optimizer.step()) based on these gradients. 

7. Loss tracking: The current loss value (loss.item()) is appended to 

the losses list to track the training progress. 

8. Saving the model: If a saved_model path is provided and the current step 

is a multiple of myconfig.SAVE_MODEL_FREQUENCY, the model is saved to a 

checkpoint file using the save_model() function. The checkpoint file name 

includes the step number for easy identification. 

9. Training completion: After completing the training loop, the total 

training time (training_time) is calculated by subtracting the start time 

from the current time. The final loss values are displayed, and if 

a saved_model path is provided, the trained model, along with the losses 

and start time, is saved using the save_model() function. 

The training process trains the LSTM-based speaker encoder by optimizing the 

model parameters with respect to the triplet loss. The model iteratively learns to 

discriminate between different speakers and generate speaker embeddings that 

capture the speaker characteristics present in the training data. 

During model training, we can enhance the efficiency of our code by leveraging 

multithreading, which allows for parallel execution of certain operations and can 

significantly speed up the training process. Additionally, after the training is 

completed, we can visualize the performance of our model by plotting a graph of 



the loss versus the number of training epochs. This graph provides valuable 

insights into the model’s convergence and helps us assess the effectiveness of our 

training procedure. 

def run_training(): 

    print("Training data:", myconfig.TRAIN_DATA_DIR) 

    speaker_to_utterance = 

dataset.get_librispeech_speaker_to_utterance(myconfig.TRAIN_DATA_DIR) 

 

    with multiprocessing.Pool(myconfig.NUM_PROCESSES) as pool: 

        losses = train_network(speaker_to_utterance, 

                               myconfig.TRAINING_STEPS, 

                               myconfig.SAVED_MODEL_PATH, 

                               pool) 

    plt.plot(losses) 

    plt.xlabel("step") 

    plt.ylabel("loss") 

    plt.show() 

 

Graph of Loss vs Epoch (Image from Author) 

Model Evaluation & Result 

For model evaluation, we will use Equal Error Rate (EER), which is a common 

metric used in speaker recognition. It iterates over different threshold values to 

find the threshold that minimizes the difference between false acceptance rate 

(FAR) and false rejection rate (FRR). 



 

The output of Evaluation.py (Image by Author) 

In the above image, eer_threshold represents the threshold value at which the 

Equal Error Rate (EER) is achieved. It indicates the similarity score threshold that 

balances the false acceptance and false rejection rates. In the example, 

the eer_threshold is 0.8310000000000006. On the other hand, eer represents the 

EER itself, which is the average of the false acceptance rate and the false rejection 

rate. In the example, the EER is 0.2, indicating a 20% error rate in both false 

acceptances and false rejections. 

These values provide insights into the performance of the speaker recognition 

system. The eer_threshold helps determine the threshold at which the system 

achieves a balanced error rate, while the eer gives an overall measure of the 

system's accuracy in distinguishing between genuine and impostor samples. 

Difference between Model Training and Model Evaluation method 

During training, the model is trained using triplets of data consisting of an 

anchor, a positive segment, and a negative segment. These triplets are used to 

learn embeddings that can discriminate between different speakers. In each batch 



during training, the batch_input contains multiple triplets, and the model is 

trained to optimize the embedding space based on the relationships between the 

anchor, positive, and negative segments within each triplet. 

However, during testing or evaluation, the goal is to compute embeddings for 

individual utterances and compare them to determine the similarity between 

different speakers. In this case, there is no need to compute embeddings for 

triplets because there are no anchor-positive-negative relationships to consider. 

Instead, each utterance is processed independently to obtain its embedding. 

In summary, during training, triplets of data are used to train the model, while 

during testing/evaluation, individual utterances are processed separately to 

compute embeddings and perform similarity comparisons. 

Conclusion 

In conclusion, while our speaker recognition model based on LSTM architecture has shown promising 

results, there are opportunities for further improvement. Exploring the use of Transformer models, 

known for their effectiveness in natural language processing tasks, could enhance the model’s ability to 

capture complex patterns in audio data. Refining feature extraction techniques, leveraging diverse 

datasets, and addressing challenges such as varying acoustic conditions and speaker characteristics are 

key areas for future research. By embracing advancements and collaboration, we can advance the 

accuracy and reliability of speaker recognition systems and contribute to this dynamic field. 

To delve deeper into the code and explore additional possibilities, please visit my GitHub repository. 

Thank you for joining us on this journey through the world of speaker recognition. Let us continue to 

push the boundaries and unlock the potential of this exciting field. 
 

https://github.com/harshyadav1508/Audio_speakerRecognition/tree/master

