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Preface

The field known as digital signal processing (DSP) has its roots in the 1940s
and 1950s, and got started in earnest in the 1960s [10]. As DSP deals with
how computers can be used to process signals, it should come as no surprise
that the field’s growth parallels the growth in the use of the computer. The
modern development of the Fast Fourier Transform in 1965 gave the field a
great push forward. Since the 1960s, the field has grown by leaps and bounds.

In this book, the reader is introduced to the theory and practice of digital
signal processing. Much time is spent acquainting the reader with the mathe-
matics and the insights necessary to master this subject. The mathematics is
presented as precisely as possible; the text, however, is meant to be accessible
to a third- or fourth-year student in an engineering program.

Several different aspects of the digital signal processing “problem” are
considered. Part I deals with the analysis of discrete-time signals. First, the
effects of sampling and of time-limiting a signal are considered. Next, the
spectral analysis of signals is considered. Both the DFT and the FFT are
considered, and their properties are developed to the point where the reader
will understand both their mathematical content and how they can be used
in practice.

After discussing spectral analysis and very briefly considering the spectral
analysis of random signals, we move on to Part II. We take a break from the
most mathematical parts of DSP, and we consider how one takes an analog
signal and converts it into a digital one and how one takes a digital signal and
converts it into an analog signal. We present many different types of converters
in moderate depth.

After this tour of analog to digital and digital to analog converters, we
move on to the third part of the book—and consider the design and analysis of
digital filters. The Z-transform is developed carefully and then the properties,
advantages, and disadvantages of infinite impulse response (IIR) and finite
impulse response (FIR) filters are explained.

Over the last several years, MATLAB r© and Simulink r© have become ubiq-
uitous in the engineering world. They are generally good tools to use when
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one wants to analyze and implement the mathematical techniques of signal
processing. They are used throughout this book as tools of analysis and as
platforms for designing, implementing, and testing algorithms.

Throughout the book, MATLAB and Simulink are used to allow the reader
to experience DSP. It is hoped that in this way the beautiful mathematics
presented will be seen to be part of a practical engineering discipline.

The Analog Devices ADuC841 is used to introduce the practical micro-
processor-oriented parts of digital signal processing. Many chapters contain
ADuC841-based laboratories—as well as traditional exercises. The ADuC841
is an easy to use and easy to understand, 8052-based microcontroller (or
microconverter r©, to use Analog Devices’ terminology). It is, in many ways, an
ideal processor for student use. It should be easy to “transpose” the ADuC841-
based laboratories to other microprocessors

It is assumed that the reader is familiar with Fourier series and transforms
and has some knowledge of signals and systems. Some acquaintance with
probability theory and the theory of functions of a (single) complex variable
will allow the reader to use this text to best advantage.

After reading this book, the reader will be familiar with both the theory
and practice of digital signal processing. It is to be hoped that the reader
will learn to appreciate the way that the many elegant mathematical results
presented form the core of an important engineering discipline.

In preparing this work, I was helped by the many people who read and
critically assessed it. In particular, Prof. Aryeh Weiss of Bar Ilan University,
and Moshe Shapira and Beni Goldberg of the Jerusalem College of Technology
provided many helpful comments. My students at the Jerusalem College of
Technology and at Bar Ilan University continue to allow me to provide all my
course materials in English, and their comments and criticisms have improved
this work.

My family has supported me throughout the period during which I spent
too many nights completing this work—and without their support, I would
neither have been able to, nor would I have desired to, produce this book.
Though many have helped with this undertaking and improved this work,
any mistakes that remain are my own.

Shlomo Engelberg
Jerusalem, Israel
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1

Understanding Sampling

Summary. In Part I, we consider the analysis of discrete-time signals. In Chapter
1, we consider how discretizing a signal affects the signal’s Fourier transform. We
derive the Nyquist sampling theorem, and we give conditions under which it is
possible to reconstruct a continuous-time signal from its samples.

Keywords. sample-and-hold, Nyquist sampling theorem, Nyquist frequency, alias-

ing, undersampling.

1.1 The Sample-and-hold Operation

Given a function g(t), if one samples the function when t = nTs and one holds
the sampled value until the next sample comes, then the result of the sampling
procedure is the function g̃(t) defined by

g̃(t) ≡ g(nTs), nTs ≤ t < (n + 1)Ts.

It is convenient to model the sample-and-hold operations as two separate
operations. The first operation is sampling the signal by multiplying the signal
by a train of delta functions

Δ(t) ≡
∞∑

n=−∞
δ(t − nTs).

A sampler that samples in this fashion—by multiplying the signal to be sam-
pled by a train of delta functions—is called an ideal sampler. The multiplica-
tion of g(t) by Δ(t) leaves us with a train of impulse functions. The areas of
the impulse functions are equal to the samples of g(t). After ideal sampling,
we are left with ∞∑

n=−∞
g(nTs)δ(t − nTs).
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The information that we want about the function is here, but the extraneous
information—like the values the function takes between sampling times—is
gone.

Next, we would like to take this ideally sampled signal and hold the values
between samples. As we have a train of impulses with the correct areas, we
need a “block” that takes an impulse with area A, transforms it into a rectan-
gular pulse of height A that starts at the time at which the delta function is
input to the block, and persists for exactly Ts seconds. A little bit of thought
shows that what we need is a linear, time-invariant (LTI) filter whose impulse
response, h(t), is 1 between t = 0 and t = Ts and is zero elsewhere.

Let us define the Fourier transform of a function, y(t), to be

Y (f) = F(y(t))(f) ≡
∫ ∞

−∞
e−2πjfty(t) dt.

It is easy enough to calculate the Fourier transform of h(t)—the frequency
response of the filter—it is simply

H(f) =
1 − e−2πjTsf

2πjf
.

(See Exercise 2.)

1.2 The Ideal Sampler in the Frequency Domain

We have seen how the “hold” part of the sample-and-hold operation behaves
in the frequency domain. How does the ideal sampler look? To answer this
question, we start by considering the Fourier series associated with the func-
tion Δ(t).

1.2.1 Representing the Ideal Sampler Using Complex
Exponentials: A Simple Approach

Proceeding formally and not considering what is meant by a delta function
too carefully1, let us consider Δ(t) to be a periodic function. Then its Fourier
series is [7]

Δ(t) =
∞∑

n=−∞
cne2πjnt/Ts ,

and

cn =
1
Ts

∫ Ts/2

−Ts/2

e−2πjnt/TsΔ(t) dt =
1
Ts

· 1 = Fs, Fs ≡ 1/Ts.

1 The reader interested in a careful presentation of this material is referred to [19].



1.2 The Ideal Sampler in the Frequency Domain 5

Fs, the reciprocal of Ts, is the frequency with which the samples are taken.
We find that

Δ(t) = Fs

∞∑

n=−∞
e2πjnFst.

1.2.2 Representing the Ideal Sampler Using Complex
Exponentials: A More Careful Approach

In this section, we consider the material of Section 1.2.1 in greater detail
and in a more rigorous fashion. (This section can be skipped without loss of
continuity.) Rather than proceeding formally, let us try to be more careful in
our approach to understanding Δ(t). Let us start by “building” Δ(t) out of
complex exponentials. Consider the sums

hN (t) ≡
N∑

n=−N

e2πjnFst. (1.1)

We show that as N → ∞ the function hN (t) tends, in an interesting sense, to
a constant multiple of Δ(t).

Rewriting (1.1) and making use of the properties of the geometric series,
we find that for t �= m/Fs,

hN (t) ≡
N∑

n=−N

e2πjnFst

= e−2πjNt
2N∑

n=0

e2πjnFst

= e−2πjNt 1 − e2πj(2N+1)Fst

1 − e2πjFst

=
sin(π(2N + 1)Fst)

sin(πFst)
.

When t = m/Fs, it is easy to see that hN (t) = 2N +1. Considering the limits
of hN (t) as t → mTs, we find that hN (t) is a continuous function. (It is not
hard to show that hN (t) is actually an analytic function. See Exercise 6.)

The defining property of the delta function is that when one integrates a
delta function times a continuous function, the integration returns the value
of the function at the point at which the delta function tends to infinity. Let
us consider the integral of hN (t) times a continuous function g(t). Because
hN (t) is a combination of functions that are periodic with period Ts ≡ 1/Fs,
so is hN (t). We consider the behavior of hN (t) on the interval [−Ts/2, Ts/2).
Because of the periodicity of hN (t), the behavior of hN (t) on all other such
intervals must be essentially the same.
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Let us break the integral of interest into three pieces. One piece will consist
of the points near t = 0—where we know that the sum becomes very large as
N becomes very large. The other pieces will consist of the rest of the points.
We consider

∫ Ts/2

−Ts/2

hN (t)g(t) dt =
∫ 1/N2/5

−1/N2/5
hN (t)g(t) dt +

∫ −1/N2/5

−Ts/2

hN (t)g(t) dt

+
∫ Ts/2

1/N2/5
hN (t)g(t) dt.

Considering the value of the last integral, we find that
∫ Ts/2

1/N2/5
hN (t)g(t) dt =

∫ Ts/2

1/N2/5
sin(π(2N + 1)Fst)(g(t)/ sin(πFst)) dt.

We would like to show that this integral tends to zero as N → ∞. Note that
if g(t) is nicely behaved in the interval [1/N2/5, Ts/2] then, since sin(πFst) is
never zero in this interval, g(t)/ sin(πFst) is also nicely behaved in the interval.
Let us consider

lim
N→∞

∫ Ts/2

1/N2/5
sin(π(2N + 1)Fst)r(t) dt

where r(t) is assumed to be once continuously differentiable. Making use of
integration by parts, we find that

lim
N→∞

∣∣∣∣∣

∫ Ts/2

1/N2/5
sin(π(2N + 1)Fst)r(t) dt

∣∣∣∣∣

= lim
N→∞

∣∣∣∣∣

(
r(t)

− cos(π(2N + 1)Fst)
π(2N + 1)Fs

∣∣∣∣
Ts/2

1/N2/5

+
∫ Ts/2

1/N2/5

cos(π(2N + 1)Fst)
π(2N + 1)Fs

r′(t) dt

)∣∣∣∣∣

≤ lim
N→∞

(
2max1/N2/5≤t≤Ts/2 |r(t)|

π(2N + 1)Fs

+
(Ts/2 − 1/N2/5)max1/N2/5≤t≤Ts/2 |r′(t)|

π(2N + 1)Fs

)
.

Assuming that for small t we know that |r(t)| < K1/|t| and |r′(t)| < K2/|t|2—
as is the case for g(t)/ sin(πFst)—we find that as N → ∞, the value of the
integral tends to zero. By identical reasoning, we find that as N → ∞,

∫ −1/N2/5

−Ts/2

hN (t)g(t) dt → 0.
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Thus, everything hinges on the behavior of the integral

∫ 1/N2/5

−1/N2/5
hN (t)g(t) dt.

That is, everything hinges on the values of g(t) near t = 0.
Let us assume that g(t) is four times continuously differentiable at t = 0.

Then, we know that g(t) satisfies

g(t) = g(0) + g′(0)t + g′′(0)t2/2 + g′′′(0)t3/6 + g(4)(ξ)ξ4/24

for some ξ between 0 and t [17]. This allows us to conclude that

lim
N→∞

∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

g(t) dt

= lim
N→∞

∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

×
(
g(0) + g′(0)t + g′′(0)t2/2 + g′′′(0)t3/6 + g(4)(ξ)ξ4/24

)
dt.

We claim that the contribution to the limit from the terms

g′(0)t + g′′(0)t2/2 + g′′′(0)t3/6 + g(4)(ξ)

is zero. Because the function multiplying g(t) is even, the contribution made
by g′(0)t must be zero. The product of the two functions is odd, and the region
is symmetric. Similarly, the contribution from g′′′(0)t3/6 must be zero.

Next consider

∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

g(4)(ξ)
ξ4

24
dt =

∫ 1/N2/5

−1/N2/5
hN (t)g(4)(ξ)(ξ4/24) dt.

Clearly g(4)(ξ)(ξ4/24) is of order (1/N2/5)4 for t ∈ [−1/N2/5, 1/N2/5]. Con-
sidering (1.1) and making use of the triangle inequality:

∣∣∣∣∣

N∑

n=−N

ak

∣∣∣∣∣ ≤
N∑

n−N

|ak| ,

it is clear that

|hN (t)| ≤
N∑

n=−N

1 = 2N + 1.

As the interval over which we are integrating is of width 2/N2/5, it is clear
that the contribution of this integral tends to zero as N → ∞. Let us consider
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∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

g′′(0)t2/2 dt.

It is clear that
∣∣∣∣∣

∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

g′′(0)t2/2 dt

∣∣∣∣∣ ≤ 2(2N + 1)
∫ 1/N2/5

0

|g′′(0)|t2/2 dt

= 2(2N + 1)|g′′(0)|(1/N2/5)3/6.

As N → ∞, this term also tends to zero. Thus, to calculate the integral of
interest, all one needs to calculate is

lim
N→∞

∫ 1/N2/5

−1/N2/5

sin(π(2N + 1)Fst)
sin(πFst)

g(0) dt.

Substituting u = π(2N + 1)Fst, we find that we must calculate

1
π(2N + 1)Fs

∫ (2N+1)/N2/5

−(2N+1)/N2/5

sin(u)
sin(u/(2N + 1))

g(0) du.

Note that as N → ∞, we find that u/(2N+1) is always small in the region over
which we are integrating. It is, therefore, easy to justify replacing sin[u/(2N +
1)] by u/(2N + 1). After making that substitution, we must calculate

lim
N→∞

1
π(2N + 1)Fs

∫ (2N+1)/N2/5

−(2N+1)/N2/5

sin(u)
u/(2N + 1)

g(0) du =
g(0)
πFs

∫ ∞

−∞

sin(u)
u

du.

This last integral is well known; its value is π [3, p. 193]. We find that

lim
N→∞

∫ Ts/2

−Ts/2

hN (t)g(t) dt = Tsg(0).

Thus, as N → ∞, the function hN (t) behaves like Tsδ(t) in the region
[−Ts/2, Ts/2]. By periodicity, we find that as N → ∞,

hN (t) → Ts

∞∑

n=−∞
δ(t − nTs).

We have found that

Δ(t) =
∞∑

n=−∞
δ(t − nTs) = Fs

∞∑

n=−∞
e2πjnFst.
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1.2.3 The Action of the Ideal Sampler in the Frequency Domain

The ideal sampler takes a function, g(t), and multiplies it by another “func-
tion,” Δ(t). Thus, in the frequency domain it convolves the Fourier transform
of g(t), G(f), with the Fourier transform of Δ(t).

What is the Fourier transform of Δ(t)? Proceeding with impunity, we state
that

F(Δ(t))(f) = Fs

∑
F(e2πjnFst)(f) = Fs

∞∑

n=−∞
δ(f − nFs).

It is (relatively) easy to see that when one convolves a function with a
shifted delta function one “moves” the center of the function to the location
of the “center” of the delta function. Thus, the convolution of G(f) with the
train of delta functions leaves us with copies of the Fourier transform of G(f)
that are spaced every Fs Hz. We find that the Fourier transform of the ideally
sampled function is

F(g(t)Δ(t))(f) = Fs

∞∑

n=−∞
G(f − nFs). (1.2)

Let us assume that G(f) is band-limited:

G(f) = 0, |f | > F.

Consider, for example, G(f) as given in Figure 1.1. When considering the
sum of shifted versions of G(f), we find that two possibilities exist. If F is
sufficiently small, then the different copies of G(f) do not overlap, and we can
see each copy clearly. See Figure 1.2. If, on the other hand, F is too large,
then there is overlap between the different shifted versions of G(f), and it is
no longer possible to “see” G(f) by simply looking at the sum of the shifted
version of G(f).

Fig. 1.1. The spectrum of the band-limited function G(f)



10 1 Understanding Sampling

Fig. 1.2. The spectrum of the ideally sampled function when there is no overlap
between copies

If the copies of G(f) do not overlap, then by low-pass filtering the signal
one can recover the original signal. When will the Fourier transforms not
overlap? Considering Figure 1.2, it is clear that in order to prevent overlap,
we must require that F < Fs − F . That is, we must require that

F < Fs/2.

That is, we must require that the highest frequency in the signal be less than
half of the sampling frequency. This is the content of the celebrated Nyquist
sampling theorem, and one half the sampling rate is known as the Nyquist
frequency2.

1.3 Necessity of the Condition

We have shown that if the highest frequency in a signal is less than half the
sampling rate, then it is possible to reconstruct the signal from its samples.
It is easy to show that if the highest frequency in a signal is greater than or
equal to the half the sampling frequency, then it is not generally possible to
reconstruct the signal.

Consider, for example, the function g(t) = sin[2πFt]. Let us take 2F sam-
ples per second at the times t = k/(2F ). The sampling frequency is exactly
twice the frequency of the signal being sampled. We find that the samples of
the signal are g[k/(2F )] = sin(πk) = 0. That is, all of our samples are zeros.
As these samples are the same as those of the function h(t) = 0, there is no
way to distinguish the samples of the signal sin(2πFt) from those of the signal
h(t) ≡ 0. There is, therefore, no way to reconstruct g(t) from its samples.

2 The sampling theorem was published by H. Nyquist in 1928, and was proved by
C.E. Shannon in 1949. See [18] for more information about the history of the
Nyquist sampling theorem.
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1.4 An Interesting Example

Suppose that g(t) = cos(2πFst) and that one is sampling Fs times per second.
As we are violating the Nyquist criterion—we are sampling at the same fre-
quency as the highest frequency present—we should not find that the sampled-
and-held signal looks similar to the original signal.

Let us use Fourier analysis (which is certainly not the easy way here)
to see what the output of the sample-and-hold element will be. The Fourier
transform of our signal is two delta functions, each of strength 1/2, located
at ±Fs. After sampling, these become a train of delta functions located at
nFs each with strength Fs. After passing this signal through the “hold block”
we find that all the delta functions at nFs, n �= 0 are multiplied by zero and
are removed. The delta function at f = 0 is multiplied by Ts, and we are left
with FsTsδ(f) = δ(f). This is the transform of g̃(t) = 1. Thus, we find that
after the sample-and-hold operation the cosine becomes a “one.” See Figure
1.3. (Show that the output of the sample-and-hold element is one in a second
way. Consider only the sample-and-hold operation, and do not use Fourier
transforms at all.)

1.5 Aliasing

Suppose that one samples a cosine of frequency F at the sampling rate Fs

where Fs > F > Fs/2 and then “reconstructs” the signal using an ideal low-
pass filter that passes all frequencies up to Fs/2. What frequency will one see
at the output of the filter?

In Figure 1.4, we see the spectrum of the unsampled cosine and of the
ideally sampled cosine. If we low-pass filter the sampled cosine using a low-
pass filter whose cut-off frequency is Fs/2 (and that amplifies by a factor of
Ts) then at the output of the filter we will have two impulses of strength 1/2.
They will be located at Fs −F and at −Fs +F . This is the Fourier transform
of cos(2π(Fs − F )t). We find that the reconstructed signal appears at the
wrong frequency. This phenomenon is known as aliasing. In order to avoid
this problem, one must place an analog low-pass filter whose cut-off frequency
is less than or equal to the Nyquist frequency before the input to the sampling
circuitry. Such a filter is known as an anti-aliasing filter.

1.6 The Net Effect

Consider what happens when one has an ideal sampler followed by a hold
“circuit” of the type described previously. The ideal sampler makes copies of
the spectrum of the signal every Fs Hz. The hold circuit then filters this new
signal. How does the filtering work? Let us consider H(f) again:
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Fig. 1.3. A simple example of aliasing



1.6 The Net Effect 13

Fig. 1.4. A more general example of aliasing

H(f) =
1 − e−2πjTsf

2πjf
.

A simple application of the triangle inequality, |a + b| ≤ |a| + |b|, shows that

|H(f)| ≤ 1
π|f | .

This is a low-pass filter of sorts.
The spectrum at the output of the sample-and-hold element is

Vout(f) =
1 − e−2πjfTs

2πjf
Fs

∞∑

−∞
Vin(f − nFs)

= e−πjfTs
sin(πf/Fs)
π(f/Fs)

∞∑

−∞
Vin(f − nFs).
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For relatively small values of f we find that e−πjfTs and sin(πf/Fs)/(πf/Fs)
are both near 1. When f is small we see that

Vout(f) ≈ Vin(f), |f | << Fs.

Let us consider how the rest of the copies of the spectrum are affected by
this filtering. At f = nFs, the sine term is zero. Thus, near multiples of the
sampling frequency the contribution of the copies is small. In fact, as long as
the sampling frequency is much greater than the largest frequency in the signal,
the contribution that the copies of the spectrum will make to the spectrum of
the output of the sample-and-hold element will be small. If the sampling rate
is not high enough, this is not true. See Exercise 7.

1.7 Undersampling

Suppose that one has a real signal all of whose energy is located between the
frequencies F1 and F2 (and −F2 and −F1) where F2 > F1. A naive application
of the Nyquist sampling theorem would lead one to conclude that in order to
preserve the information in the signal, one must sample the signal at a rate
exceeding 2F2 samples per second. This, however, need not be so.

Consider the following example. Suppose that one has a signal whose en-
ergy lies between 2 and 4 kHz (exclusive of the endpoints). If one samples the
signal at a rate of 4,000 sample per second, then one finds that the spectrum
is copied into non-overlapping regions. Thus, after such sampling it is still
possible to recover the signal. Sampling at a frequency that is less than the
Nyquist frequency is called undersampling . Generally speaking, in order to be
able to reconstruct a signal from its samples, one must sample the signal at a
frequency that exceeds twice the signal’s bandwidth.

1.8 The Experiment

1. Write a program for the ADuC841 that causes the microcontroller to
sample a signal 1,000 times each second. Use channel 0 of the ADC for
the sampling operation.

2. Have the program move the samples from the ADC’s registers to the
registers that “feed” DAC 0. This will cause the samples to be output by
DAC 0.

3. Connect a signal generator to the ADC and an oscilloscope to the DAC.
4. Use a variety of inputs to the ADC. Make sure that some of the inputs

are well below the Nyquist frequency, that some are near the Nyquist
frequency, and that some exceed the Nyquist frequency. Record the oscil-
loscope’s output.
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1.9 The Report

Make sure that your report includes the program you wrote, the plots that
you captured, and an explanation of the extent to which your plots agree with
the theory described in this chapter.

1.10 Exercises

1. Suppose g(t) = sin(2πFst) and one uses a sample-and-hold element that
samples at the times

t = nTs, n = 0, 1, . . . , Fs = 1/Ts.

Using Fourier transforms, calculate what the sampled-and-held waveform
will be.

2. Show that the frequency response of a filter whose impulse response is

h(t) =
{

1 0 ≤ t < Ts

0 otherwise

is

H(f) =

{
1−e−2πjfTs

2πjf f �= 0
Ts f = 0

.

3. Show that H(f)—the frequency response of the “hold element”—can be
written as

H(f) =

{
e−jπTsf sin(πTsf)

πf f �= 0
Ts f = 0

.

4. Let H(f) be given by the function

H(f) =
{

1 2,200 < |f | < 2,800
0 otherwise .

If one uses an ideal sampler to sample h(t) every Ts = 0.5ms, what will
the spectrum of the resulting signal be?

5. Show that the spectrum of an ideally sampled signal as given in (1.2) is
periodic in f and has period Fs.

6. Show that the function

f(t) =

{
sin(π(2N+1)t)

sin(πt) t �= k

2N + 1 t = k

is
a) Periodic with period 1.
b) Continuous on the whole real line.
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Note that as both the numerator and the denominator are analytic func-
tions and the quotient is continuous, the quotient must be analytic. (This
can be proved using Morera’s theorem [3, p. 133], for example.)

7. Construct a Simulink r© model that samples a signal 100 times per sec-
ond and outputs the samples to an oscilloscope. Input a sinewave of fre-
quency 5 Hz and one of frequency 49 Hz. You may use the “zero-order
hold” block to perform the sample-and-hold operation. Can you iden-
tify the 5 Hz sinewave from its sampled version? What about the 49 Hz
sinewave? Explain why the oscilloscope traces look the way they do.
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Signal Reconstruction

Summary. We have seen that if one samples a signal at more than twice the highest
frequency contained in the signal, then it is possible, in principle, to reconstruct the
signal. In this chapter, we consider the reconstruction problem from a somewhat
more practical perspective.

Keywords. reconstruction, Taylor series.

2.1 Reconstruction

From what we described in Chapter 1, it would seem that all that one needs
to do to reconstruct a signal is to apply an ideal low-pass filter—a low-pass
filter whose frequency response is one up to the Nyquist frequency and zero
for all higher frequencies—to the sampled signal.

This is not quite true. Let us consider a practical sampling system—a
system in which the sample-and-hold element is a single element. In such a
system, one does not see perfect copies of the signal in the frequency domain.
Such “pure copies” are found only when viewing an ideally sampled signal—a
signal multiplied by a train of delta functions. As we saw in Chapter 1, the
spectrum at the output of the sample-and-hold element is

Vout(f) = e−πjfTs
sin(πf/Fs)
π(f/Fs)

∞∑

n=−∞
Vin(f − nFs).

The sampling operation creates copies of the spectrum; the hold operation
filters all the copies somewhat. Even given an ideal low-pass filter that com-
pletely removes all the copies of the spectrum centered at f = nFs, n �= 0, one
finds that the baseband copy of the spectrum, the copy centered at 0 Hz, is

Vlow-pass(f) = e−πjfTs
sin(πf/Fs)
π(f/Fs)

Vin(f).



18 2 Signal Reconstruction

As we know [17] that

sin(x)/x ≈ 1 − x2/3, |x| << 1,

we find that if f is not too large, the magnitude of the Fourier transform
of the low-passed version of the output of the sample-and-hold element is
approximately

|Vlow-pass(f)| ≈
(

1 − (πf/Fs)2

3!

)
|Vin(f)|.

If the sampling frequency is five times greater than the highest frequency
present in the signal, then the highest frequency will be attenuated by a
factor of approximately

attenuation ≈ 1 − (π/5)2/6 = 0.93.

That is, even after ideal filtering, the output of the sample-and-hold unit may
be attenuated by as much as 7%, and the degree of attenuation is frequency-
dependent.

2.2 The Experiment

1. Build a Simulink r© system composed of a sinewave generator, a zero-order
hold element (which is equivalent to our sample-and-hold element), a high-
order Butterworth filter, and an oscilloscope.

2. Set the zero-order hold to sample 100 times per second, and let the cut-off
frequency of the filter be 50 Hz.

3. Input signals that are well below, near, and above the Nyquist frequency.
Record the input to, and the output of, the system.

2.3 The Report

In your report, include a description of the Simulink model built, a figure that
illustrates the system, and printouts of the oscilloscope input and output for
a variety of frequencies.
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2.4 Exercises

1. By making use of the fact that the Taylor series that corresponds to
sin(x)/x,

sin(x)
x

= 1 − x2/3! + · · · + (−1)kx2k/(2k + 1)! + · · · ,

is an alternating series, prove that
∣∣∣∣
sin(x)

x
− (1 − x2/3!)

∣∣∣∣ ≤
1

120
, |x| ≤ 1.
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Time-limited Functions Are Not Band-limited

Summary. In this chapter, we show that it is impossible for both a function and
its Fourier transform to be well localized. We show that if a function is compactly
supported—if it is zero outside of some bounded region—then its Fourier transform
cannot be compactly supported. Then we show that the “narrower” a function is in
the time domain, the more spread out it will be in the frequency domain (and vice
versa).

Keywords. compact support, analytic function, time-limited, band-limited, uncer-

tainty principle.

3.1 A Condition for Analyticity

The Fourier transform of a function, g(t), is

G(f) =
∫ ∞

−∞
e−2πjftg(t) dt.

Suppose that the function, g(t), is continuous and compactly supported—that
g(t) = 0 if |t| ≥ T . Then the Fourier transform of g(t), G(f), is equal to

G(f) =
∫ T

−T

e−2πjftg(t) dt =
∫ T

−T

∞∑

k=0

(−2πjft)k

k!
g(t) dt.

We would like to interchange the order of integration and summation, so we
must show that the series converges uniformly. To this end, we consider the
absolute value of the terms

(−2πjft)k

k!
g(t)

when |t| ≤ T . We find that
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∣∣∣∣
(−2πjft)k

k!
g(t)
∣∣∣∣ ≤

(2π|f |T )k

k!
max
|t|≤T

|g(t)|.

We now consider the remainder of the series appearing in the calculation of
G(f). We consider the sum

∞∑

k=N

(−2πjft)k

k!
g(t).

We find that
∣∣∣∣∣

∞∑

k=N

(−2πjft)k

k!
g(t)

∣∣∣∣∣ ≤
∞∑

k=N

∣∣∣∣
(−2πjft)k

k!
g(t)
∣∣∣∣ ≤

∞∑

k=N

(2π|f |T )k

k!
max
|t|≤T

|g(t)|.

Considering the sum
∞∑

k=N

C
xk

k!
, x > 0,

we find that
∞∑

k=N

C
xk

k!
= C

xN

(N − 1)!

∞∑

k=N

xk−N

k(k − 1) · · ·N

≤ C
xN

(N − 1)!

∞∑

k=N

xk−N

(k − N)!

=
xN

(N − 1)!
ex.

As N → ∞ this sum tends to zero. Applying this result to our sum, we find
that ∣∣∣∣∣

∞∑

k=N

(−2πjft)k

k!
g(t)

∣∣∣∣∣ ≤ max
|t|≤T

|g(t)| (2π|f |T )N

(N − 1)!
e2π|f |T .

As N → ∞ this sum tends to zero uniformly in t, and the sum that appears in
the calculation of G(f) is uniformly convergent. This allows us to interchange
the order of summation and integration in the integral that defines G(f).
Interchanging the order of summation and integration, we find that

G(f) =
∞∑

k=0

fk (−2πj)k

k!

∫ T

−T

tkg(t) dt.

As G(f) is represented by a convergent Taylor series, it is analytic [3, p. 159].
That is, the Fourier transform of a compactly supported function is analytic.
(In order to show that the value of the remainder of the series tends to zero
uniformly, we made use of the fact that g(t) is zero for |t| > T . When g(t) is
not time-limited, it is possible for G(f) to be band-limited.)



3.3 The Uncertainty Principle 23

3.2 Analyticity Implies Lack of Compact Support

It is well known and easy to prove that a non-constant analytic function
cannot be constant along any smooth curve [3, p. 284]. Thus, as long as G(f)
is not identically zero, it cannot be zero on any interval. Thus, a non-zero
time-limited function—a non-zero function that is compactly supported in
time—cannot be band-limited. The same basic proof shows that band-limited
functions cannot be time-limited. (See Exercise 1.)

3.3 The Uncertainty Principle

We now prove that a function cannot be well localized in time and frequency.
We showed above that if a function is completely localized in time, it cannot
be completely localized in frequency. We now extend this result.

We prove that
(∫ ∞

−∞
t2|f(t)|2 dt/E

)(∫ ∞

−∞
f2|F (f)|2 df/E

)
≥ 1/(16π2) (3.1)

where
E ≡

∫ ∞

−∞
|f(t)|2 dt

Parseval=
∫ ∞

−∞
|F (f)|2 df.

The normalized integrals in (3.1) measure the degree of localization of a func-
tion and its Fourier transform. (See Exercise 3.) The bigger either number is,
the less localized the relevant function is.

To prove (3.1), we consider the integral
∫ ∞

−∞
tf(t)

df(t)
dt

dt.

The Cauchy-Schwarz inequality for integrals [18] shows that
∣∣∣∣
∫ ∞

−∞
tf(t)

df(t)
dt

dt

∣∣∣∣ ≤
√∫ ∞

−∞
t2|f(t)|2 dt

√∫ ∞

−∞

∣∣∣∣
df(t)

dt

∣∣∣∣
2

dt. (3.2)

Let us evaluate the leftmost integral. Making the (relatively mild) assump-
tion that

lim
|t|→∞

√
|t|f(t) = 0,

we find that
∫ ∞

−∞
tf(t)

df(t)
dt

dt =
∫ ∞

−∞
t
df2(t)/2

dt
dt

= tf2(t)/2
∣∣∞
−∞ −

∫ ∞

−∞
f2(t)/2 dt

= −
∫ ∞

−∞
f2(t)/2 dt.
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Let us now evaluate the other integral of interest in (3.2). Making use of
Parseval’s theorem [7] and the fact that the Fourier transform of the derivative
of a function is 2πjf times the Fourier transform of the original function, we
find that ∫ ∞

−∞

∣∣∣∣
df(t)

dt

∣∣∣∣
2

dt = (2π)2
∫ ∞

−∞
f2|F (f)|2 df.

Squaring both sides of (3.2) and combining all of our results, we find that
(∫ ∞

−∞
t2|f(t)|2 dt/E

)(∫ ∞

−∞
f2|F (f)|2 df/E

)
≥ 1/(16π2).

3.4 An Example

Let us consider the function g(t) = e−|t|. It is well known [7] that

G(f) =
2

(2πf)2 + 1
.

In this case,

E =
∫ ∞

−∞

(
e−|t|

)2

dt =
∫ ∞

−∞
e−2|t| dt = 1.

By making use of integration by parts twice, it is easy to show that
∫ ∞

−∞
t2e−2|t| dt =

1
2
.

What remains is to calculate the integral
∫ ∞

−∞

4f2

[(2πf)2 + 1]2
df.

One way to calculate this integral is to make use of the method of residues.
(For another method, see Exercise 6.)

Let CR be the boundary of the upper half-disk of radius R traversed in
counter-clockwise direction. That is, we start the curve from −R, continue
along the real axis to +R, and then leave the real axis and traverse the upper
semicircle in the counter-clockwise direction. Because the order of the numer-
ator is two greater than that of the denominator, it is easy to show that as
R → ∞, the contribution of the semicircle tends to zero.

We find that
∫ ∞

−∞

4f2

[(2πf)2 + 1]2
df = 4 lim

R→∞

∮

CR

z2

[(2πz)2 + 1]2
dz.

As long as R > 1, we find that inside the curve CR, the integrand has one
pole of multiplicity 2 at the point z = −j/(2π). Rewriting the integrand as
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z2

[(2πz)2 + 1]2
=

1
(2π)4

z2

[z + j/(2π)]2[z − j/(2π)]2
,

it is clear that the residue at j/(2π) is

d
dz

1
(2π)4

z2

[z + j/(2π)]2

∣∣∣∣
z=j/(2π)

=
−jπ

2
1

(2π)4
.

We find that for all R > 1,

4
∮

CR

z2

[(2πz)2 + 1]2
dz = 4 × 2πj ×−jπ

2
1

(2π)4
=

1
4π2

.

In particular, we conclude that
∫ ∞

−∞

4f2

[(2πf)2 + 1]2
df =

1
4π2

.

All in all, we find that
(∫ ∞

−∞
t2|f(t)|2 dt/E

)(∫ ∞

−∞
f2|F (f)|2 df/E

)
=

1
8π2

>
1

16π2
.

This is in perfect agreement with the theory we have developed.

3.5 The Best Function

Which functions achieve the lower bound in (3.1)? In our proof, it is the
Cauchy-Schwarz inequality that leads us to the conclusion that the product
is greater than or equal to 1/(16π2). In the proof of the Cauchy-Schwarz
inequality (see, for example, [7]), it is shown that equality holds if the two
functions whose squares appear in the inequality are constant multiples of
one another. In our case, this means that we must find the functions that
satisfy

df(t)
dt

= ctf(t).

It is easy to see (see Exercise 2) that the only functions that satisfy this
differential equation and that are square integrable1 are the functions

f(t) = Dect2/2, c < 0.

1 Square integrable functions are functions that satisfy
∫∞
−∞ |f(t)|2 dt < ∞.
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3.6 Exercises

1. Prove that a non-constant band-limited function cannot be time-limited.
2. Find the solutions of the equation

df

dt
= ctf(t).

Show that the only solutions of this equation that are square integrable,
that is, the only solutions, f(t), for which

∫ ∞

−∞
f2(t) dt < ∞,

are the functions
f(t) = Dect2/2, c < 0.

3. Consider the functions

fW (t) =
1√
W

ΠW (t)

where the function ΠW (t) is defined as

ΠW (t) ≡
{

1 |t| ≤ W/2
0 otherwise .

Show that

loc(W ) ≡
(∫ ∞

−∞
t2|fW (t)|2 dt/E

)

is a monotonically increasing function of W . Explain how this relates to
the fact that loc(W ) is a measure of the extent to which the functions
fW (t) are localized.

4. Let
g(t) =

1√
2π

e−t2/2.

Calculate G(f), and show that for this Gaussian function the two sides of
Inequality (3.1) are actually equal. (One may use a table of integrals to
evaluate the integrals that arise. Alternatively, one can make use of the
properties of the Gaussian PDF for this purpose.)

5. Explain why, if one makes use of the criterion of this chapter to determine
how localized a function is, it is reasonable to say that the function

f(t) =
{

sin(t)
t t �= 0

1 t = 0

is “totally unlocalized.”
6. Let g(t) = e−|t| as it is in Section 3.4.



3.6 Exercises 27

a) Show that for this g(t),
∫ ∞

−∞
f2|G(f)|2 df =

∫ ∞

−∞
f2G(f)2 df.

b) Calculate ∫ ∞

−∞
f2G(f)2 df

by making use of Parseval’s theorem and the properties of the Fourier
transform. (You may ignore any “small” problems connected to dif-
ferentiating g(t).)
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Fourier Analysis and the Discrete Fourier
Transform

Summary. Having discussed sampling and time-limiting and how they affect a
signal’s spectrum, we move on to the estimation of the spectrum of a signal from
the signal’s samples. In this chapter, we introduce the discrete Fourier transform, we
discuss its significance, and we derive its properties. Then we discuss the family of
algorithms know as fast Fourier transforms. We explain their significance, describe
how one uses them, and discuss zero-padding and the fast convolution algorithm.

Keywords. Fourier transform, discrete Fourier transform, fast Fourier transform,

zero-padding, fast convolution.

4.1 An Introduction to the Discrete Fourier Transform

Often, we need to determine the spectral content of a signal—how much of
a signal’s power is located at a given frequency. In general, this means that
we would like to determine the Fourier transform of the signal. Because we
are actually measuring the signal, we cannot possibly know its values from
t = −∞ to t = +∞. We can only know the signal’s value in some finite
interval. As we generally use a microprocessor to make measurements, even
in that interval we only know the signal’s value at discrete times—generally
at the times t = nTs where Ts is the sampling period. From this set of time-
limited samples, we would like to estimate the Fourier transform of the signal.

If all that one knows of a signal is its value in an interval it is clearly
impossible to determine the signal’s Fourier transform. Something must be
assumed about the signal at the times for which no measurements exist. A
fairly standard assumption, and the most reasonable in many ways, is that the
function is zero outside the region in which it is measured and is reasonably
smooth inside this region. We will, once again, consider the consequences
of time-limiting the function—of “lopping off the tails” of the function—in
Chapter 5.

Recalling that the Fourier transform of a function, y(t), is
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Y (f) = F(y(t))(f) ≡
∫ ∞

−∞
e−2πjfty(t) dt,

we find that given a function, y(t), which is zero outside the region t ∈ [0, T ],
we can express its Fourier transform as

Y (f) =
∫ T

0

e−2πjfty(t) dt.

Suppose that we have only N samples of the function taken at t = k(T/N), k =
0, . . . , N − 1. Then we can estimate the integral by

Y (f) ≈
N−1∑

k=0

e−2πjfkT/Ny(kT/N)(T/N).

If we specialize the frequencies we are interested in to f = m/T, n =
0, . . . N − 1, then we find that

Y (m/T ) ≈ (T/N)
N−1∑

k=0

e−2πjmk/Nyk, yk = y(kT/N). (4.1)

The discrete Fourier transform (DFT) of the sequence yk is defined as

Ym = DFT({yk})(m) ≡
N−1∑

k=0

e−2πjmk/Nyk. (4.2)

The value of the DFT is (up to the constant of proportionality T/N) an
approximation of the value of the Fourier transform at the frequency m/T .

4.2 Two Sample Calculations

Consider the sequence {yk} given by

{−1, 1,−1, 1}.
As N = 4, we find that

Y0 = e0(−1) + e0(1) + e0(−1) + e0(1) = 0
Y1 = (e−πj/2)0(−1) + e−πj/2(1) + (e−πj/2)2(−1) + (e−πj/2)3(1)

= 1(−1) + (−j)(1) + (−1)(−1) + j(1) = 0
Y2 = (−1)0(−1) + (−1)(1) + (−1)2(−1) + (−1)3(1) = −4
Y3 = j0(−1) + j1(1) + j2(−1) + j3(1) = 0.

Now consider the sequence {zk} given by
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{1, 1, 0, 0}.

We find that

Zm =
3∑

k=0

e−2πjkm/4yk =
3∑

k=0

(
e−jπ/2

)km

yk =
3∑

k=0

(−j)kmyk.

Thus, we find that

Z0 = 2

Z1 =
3∑

k=0

(−j)kyk = 1 − j

Z2 =
3∑

k=0

(−j)2kyk =
3∑

k=0

(−1)kyk = 0

Z3 =
3∑

k=0

(−j)3kyk =
3∑

k=0

jkyk = 1 + j.

4.3 Some Properties of the DFT

We have seen that the DFT is an approximation to the Fourier transform.
Why use this particular approximation? The short answer is that the DFT
has many nice properties, and many of the DFT’s properties “mimic” those
of the Fourier transform.

The DFT, {Yk}, is an N -term sequence that is derived from another N -
term sequence {yk}. We will shortly show that the mapping from sequence to
sequence is invertible. Moreover, the mapping is almost an isometry—almost
norm-preserving. Let the l2 norm of an N -term sequence {c0, . . . cN−1} be
defined as √√√√

N−1∑

k=0

|ck|2.

Then the mapping preserves the l2 norm (except for multiplication by a con-
stant) as well.

To show that the mapping is invertible, it is sufficient to produce an inverse
mapping. Consider the value of the sum

ak =
N−1∑

m=0

e2πjkm/NYm.

We find that
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ak =
N−1∑

m=0

e2πjkm/NYm

=
N−1∑

m=0

e2πjkm/N
N−1∑

n=0

e−2πjmn/Nyn

=
N−1∑

m=0

N−1∑

n=0

e−2πjmn/Ne2πjkm/Nyn

=
N−1∑

n=0

yn

N−1∑

m=0

e−2πjm(n−k)/N .

As the inner sum is simply a geometric series, we can sum the series. We find
that for 0 ≤ n ≤ N − 1,

N−1∑

m=0

e−2πjm(n−k)/N =

{
N, n = k

1−e2πj(n−k)

1−e−2πj(n−k)/N = 0, otherwise
= Nδnk

where δnk = 1, n = k, and δnk = 0, n �= k. (The function δnk is known as the
Kronecker1 delta function.) We find that ak = Nyk. That is, we find that

yk = ak/N =
1
N

N−1∑

m=0

e+2πjkm/NYm.

This mapping of sequences is known as the inverse discrete Fourier transform
(IDFT), and it is almost identical to the DFT.

In Section 4.2, we found that the DFT of the sequence {−1, 1,−1, 1} is

{Ym} = {0, 0,−4, 0}.
Using the IDFT, we find that

y0 =
1
4
(−4) = −1

y1 =
1
4

3∑

m=0

(
eπj/2

)m

Ym =
1
4
(−1) · (−4) = 1

y2 =
1
4

3∑

m=0

(
eπj
)m

Ym =
1
4
1 · (−4) = −1

y3 =
1
4

3∑

m=0

(
e3πj/2

)m

Ym =
1
4
(−1) · (−4) = 1.

These are indeed the samples we started with in Section 4.2.
1 Named after Leopold Kronecker (1823–1891) [18].
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Let

Y =

⎡

⎢⎣
Y0

...
YN−1

⎤

⎥⎦ and y =

⎡

⎢⎣
y0

...
yN−1

⎤

⎥⎦

where the elements of Y are the terms in the DFT of the sequence {y0, . . . , yN−1}.
Consider the square of the norm of the vector, ‖Y‖2. We find that

‖Y‖2 ≡
N−1∑

m=0

|Ym|2

=
N−1∑

m=0

YmY m

=
N−1∑

m=0

N−1∑

k=0

e2πjkm/Nyk

N−1∑

l=0

e−2πjlm/Nyl

=
N−1∑

k=0

N−1∑

l=0

ykyl

N−1∑

m=0

e−2πj(k−l)m/N

=
N−1∑

k=0

N−1∑

l=0

ykylNδkl

= N
N−1∑

k=0

ykyk

= N
N−1∑

k=0

|yk|2

= N‖y‖2.

We find that the mapping is almost an isometry. The mapping preserves the
norm up to a constant factor. Considering the transform pair {yk} ↔ {Ym}
of Section 4.2, we find that ‖y‖2 = 4 and ‖Y‖2 = 16 = 4 · 4. This is in perfect
agreement with the theory we have developed.

Assuming that the yk are real, we find that

YN−m =
N−1∑

k=0

e−2πjk(N−m)/Nyk

=
N−1∑

k=0

e−2πjk(−m)/Nyk

=
N−1∑

k=0

e2πjkm/Nyk
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=
N−1∑

k=0

e−2πjkm/Nyk

= Ym.

This shows that |YN−m| = |Ym|. It also shows that when the yk are real, the
values of Ym for m > N/2 do not contain any new information.

Consider the definition of the DFT:

Ym =
N∑

k=0

e−2πjkm/Nyk.

Suppose that we allow m to be any integer—rather than restricting m to lie
between 0 and N − 1. Then we find that

YN+m =
N∑

k=0

e−2πjk(N+m)/Nyk

=
N∑

k=0

e−2πjkN/Nyke−2πjkm/Nyk

=
N∑

k=0

e−2πjkm/Nyk.

That is, the “extended DFT,” {. . . , Y−1, Y0, Y1, . . .}, is periodic with period
N .

Finally, let us consider the DFT of the circular convolution (or cyclic con-
volution) of two N -periodic sequences, ak and bk. Let the circular convolution
of the two sequence be defined as

yk = ak ∗ bk ≡
N−1∑

n=0

anbk−n.

(As is customary, we denote the convolution operation by an asterisk.) We
find that the DFT of yk is

Ym =
N−1∑

k=0

e−2πjmk/Nyk

=
N−1∑

k=0

e−2πjmk/N
N−1∑

n=0

anbk−n

=
N−1∑

n=0

an

N−1∑

k=0

e−2πjmk/Nbk−n

=
N−1∑

n=0

e−2πjmn/Nan

N−1∑

k=0

e−2πjm(k−n)/Nbk−n.
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As the sequence e−2πjm(k−n)/Nbk−n is periodic of period N in the variable k,
the second sum above is simply the DFT of the sequence bk. The first sum is
clearly the DFT of ak. Thus, we have shown that

Ym = AmBm. (4.3)

We have shown that the DFT of the circular convolution of two periodic
sequences is the product of the DFTs of the two sequences.

4.4 The Fast Fourier Transform

The DFT can be used to approximate the Fourier transform. A practical
problem with using the DFT is that calculating the DFT of a vector with N
elements seems to require N × N complex multiplications and (N − 1) × N
complex additions. Calculating the DFT seems to require approximately 2N2

arithmetical operations.
In 1965, J.W. Cooley and J.W. Tukey published an important work [5]

in which they explained how under some conditions one could calculate an
N -term DFT by performing on the order of N log(N) calculations2. As the
logarithm of N grows much slower than N , this made (and continues to make)
the calculation of the DFT of large sequences possible. The algorithms related
to this idea are known as fast Fourier transforms (FFTs).

To see how these algorithms work, consider a sequence with N terms, yk,
k = 0, . . . N − 1, and let N be an even number. The sequence’s DFT is given
by

Ym =
N−1∑

k=0

e−2πjkm/Nyk

=
(N/2)−1∑

k=0

e−2πj(2k)m/Ny2k +
(N/2)−1∑

k=0

e−2πj(2k+1)m/Ny2k+1

=
(N/2)−1∑

k=0

e−2πjkm/(N/2)y2k + e−2πjm/N

(N/2)−1∑

k=0

e−2πjkm/(N/2)y2k+1.

We have calculated the DFT of yk by breaking up the N -term DFT into two
N/2-term DFTs. As each DFT takes approximately 2N2 terms, each of the
smaller DFTs requires approximately 2N2/4 operations. Since we have two
of the smaller DFTs to calculate, our total operation count is approximately
2 The technique had been used in the past by such scientists as C.F. Gauss [18].

Until the advent of the computer, the technique was not very important. Cooley
and Tukey rediscovered the technique and appreciated its importance for digital
signal processing.
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N2. Additionally, the final reconstruction step requires N additions and N
multiplications; it requires 2N arithmetical operations.

If we calculate the DFTs of the N/2-length sequences by splitting the se-
quences, we will have four N/4-length DFTs to calculate. That will require
approximately 4 · 2(N/4)2 = N2/2 calculations. In the reconstruction phase,
we need 2 · 2N/2 = 2N additions and multiplications to reconstruct the two
N/2-length DFTs. We find that if we split the DFT twice, we need approxi-
mately 2N2/22 + 2(2N) operations to calculate the original N sample DFT.
In general, we find that if we split the dataset k times, we need approxi-
mately 2N2/2k + k2N operations to calculate the original DFT. Supposing
that N = 2M , then if we perform M splits—the most we can perform—we
need approximately 2N2/2M +M2N = 2N +2 log2(N)N operations in order
to calculate the DFT of the original N -term sequence. As N is small relative
to N log(N), it is sufficient to say that FFT algorithm requires on the order of
N log(N) operations in order to calculate the DFT of an N -element sequence.

As the IDFT of a sequence is essentially the same as the DFT of the
sequence, it is not surprising that there is also a fast inverse DFT known as the
inverse fast Fourier transform (IFFT). The IFFT also requires on the order of
N log(N) operations to calculate the IDFT of an N -term sequence. The FFT
algorithm described above works properly only if the number of elements in
the sequence is a power of two. Generally speaking, FFT algorithms have a
requirement that the number of elements must be of some specific form. (In
our case, the number of elements must be a power of two—but there are other
algorithms, and they have different conditions.)

4.5 A Hand Calculation

Let us calculate the DFT of the sequence

{xn} = {−1, 1, 1, 1,−1, 0, 1, 0}

using the method of the previous section. We subdivide this large calculation
into two smaller calculations. We find that we must calculate the DFTs of the
sequences

{−1, 1,−1, 1} and {1, 1, 0, 0}.
The DFT of the first sequence is, as we have seen, {Ym} = {0, 0,−4, 0}. The
DFT of the second sequence is {Zm} = {2, 1 − j, 0, 1 + j}. According to our
rule, the final DFT must be

Xm = Ym + e−2πjm/NZm.

(In order to calculate values of Ym and Zm for m > 3, we make use of the
periodicity of the DFT and of the fact that all the samples are real numbers.)
We find that
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X0 = Y0 + Z0 = 2

X1 = Y1 + e−2πj/8Z1 =
1 − j√

2
(1 − j) = −j

√
2

X2 = Y2 + e−2πj2/8Z2 = −4

X3 = Y3 + e−2πj3/8Z3 =
−1 − j√

2
(1 + j) = −j

√
2

X4 = Y4 + e−2πj4/8Z4 = Y0 + e−2πj4/8Z0 = −2
X5 = X8−3 = X3 = j

√
2

X6 = X2 = −4
X7 = X1 = j

√
2.

4.6 Fast Convolution

In addition to the fact that the FFT makes it possible to calculate DFTs very
quickly, the FFT also enables us to calculate circular convolutions quickly. Let
yn be the circular convolution of two N -periodic sequences, an and bn. Then,

yn = an ∗ bn =
N−1∑

k=0

akbn−k, n = 0, . . . , N − 1.

In principle, each of the N elements of yn requires N multiplications and
N − 1 additions. Thus, calculating the circular convolution seems to require
on the order of N2 calculations. As we saw previously (on p. 34), the DFT
of the circular convolution of two sequences is the product of the DFTs of
the sequences. Thus, it is possible to calculate the circular convolution by
calculating the DFTs of the sequences, calculating the product of the DFTs,
and then calculating the IDFT of the resulting sequence. That is, we make
use of the fact that

an ∗ bn = IDFT({DFT({an)}) element-wise× DFT({bn)})})

to calculate the circular convolution of two sequences. When performed in this
way by an FFT algorithm, the calculation requires on the order of N log(N)
calculations, and not on the order of N2 calculations.

4.7 MATLAB, the DFT, and You

MATLAB r© has a command, fft, that calculates the DFT. The command
makes use of an FFT algorithm whenever it can. Otherwise, it performs a
“brute force” DFT. The fft command makes it very easy to calculate a DFT.
The code segment of Figure 4.1 compares the DFT of the signal y(t) = e−|t|
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with its actual Fourier transform, Y (f) = 2
(2πf)2+2 . The output of the program

is given in Figure 4.2. (Note that—as predicted—the DFT is symmetric about
its center.)

% This program demonstrates the use of MATLAB’s FFT command.

t = [-1000:1000]/10; % The array t has the times to be

% examined.

y = exp(-abs(t));

subplot(2,2,1) % Subplot is used to break the plot

% into a 2x2 set of plots.

plot(t,y,’k’)

title(’The Signal’)

z = fft(y); % The fft command will perform a

% DFT as efficiently as it can.

f = [0:2000] / (2001/10); % The array f has the frequencies

% that were estimated.

subplot(2,2,2)

plot(f,(200.1/2001)*abs(z),’--k’)% We use the absolute value of the

% DFT. We are not really

% interested in the phase here.

% 200.1/2001 is T/N.

title(’The DFT’)

subplot(2,2,3)

plot(f, 2 ./((2 * pi * f).^2 + 1),’.-k’)

title(’The Fourier Transform’)

subplot(2,2,4)

plot(f, (200.1/2001)*abs(z),’--k’,f, 2./((2*pi*f).^2+1),’.-k’)

title(’A Comparison of the Fourier Transform and the DFT’)

print -djpeg comp.jpg

Fig. 4.1. The MATLAB program

A few general comments about the MATLAB commands used should make
the code easier to understand.

• The command [-1000:1000] causes MATLAB to produce an array whose
elements are the integers from –1,000 to 1,000. The division by 10 in the
command [-1000:1000]/10 is performed on an element by element basis.
Thus, the final array consists of the numbers from –100 to 100, the elements
being incremented by 0.1.

• In MATLAB code, a semicolon suppresses printing. (Generally speaking,
MATLAB prints the output of each command it is given.)

• The command abs calculates the absolute value of each element of the
input to the command.
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• The command subplot(m,n,k) causes MATLAB to create or refer to a
figure with m × n subfigures. The next subfigure to be accessed will be
subfigure k.

• The command plot(x,y) is used to produce plots. When used as shown
above—in its (almost) simplest form—the command plots the values of y
against those of x.

• In the command plot(x,y,’--k’), the string ’--k’ tells MATLAB to use
a black dashed line when producing the plot. (The string can be omitted
entirely. When no control string is present, MATLAB uses its own defaults
to choose line styles and line colors.)

• The command title adds a title to the current plot.

MATLAB has several types of help commands, and all of them can be used
to learn more about these commands.

A few comments about the MATLAB code, and how it relates to what we
have seen about DFTs, are also in order. First of all, note that in the program
the value of the DFT returned by MATLAB is multiplied by 200.1/2,001. This
is just T/N— the constant of proportionality from (4.1). (T = 200.1 because
2,001 samples are taken and the time between samples is 0.1.)

The vector f is defined as f = [0:2000] / (2001/10);. That the vector
must contain 2,001 elements is clear. The data fed to the DFT had 2,001
elements, and the length of the DFT is the same as that of the input data.
The actual frequencies to which the elements of the DFT correspond are
m/T, m = 0, . . . , 2,000. As T = 2,001/10, the division by 2,001/10 is ex-
plained.

4.8 Zero-padding and Calculating the Convolution

Suppose that one would like to calculate the (ordinary) convolution of two
non-periodic sequences. That is, given {a0, . . . , aN−1} and {b0, . . . , bN−1}, one
would like to calculate

ck = ak ∗ bk ≡
N−1∑

n=0

anbk−n, 0 ≤ k ≤ 2N − 2

where the value of an element of {ak} or {bk} whose index exceeds N − 1 or
is less than 0 is taken to be zero.

One way to calculate this convolution is to calculate the given sum for
k = 0, . . . , 2N − 2. This takes on the order of N2 operations. We have already
seen that for circular convolutions, this is not the best that one can do; here,
too, one can do better.

Suppose that we almost double the length of each sequence by adding
N − 1 zeros to the end of the sequence. That is, let us define the sequences
by taking
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Fig. 4.2. The function, its DFT, its Fourier transform, and a comparison

ãk =
{

ak 0 ≤ k ≤ N − 1
0 N ≤ k ≤ 2N − 2

and

b̃k =
{

bk 0 ≤ k ≤ N − 1
0 N ≤ k ≤ 2N − 2 .

We find that the convolution of these two sequences, which we call dk, is

dk = ãk ∗ b̃k =
2N−2∑

n=0

ãnb̃k−n.

It is easy to see that for 0 ≤ k ≤ 2N − 2, we have dk = ck.
Now let us consider the circular convolution of the two sequences. We

find that when the number of zeros added is one less than the length of
the original vector, then the circular convolution is exactly the same as the
ordinary convolution. If one adds still more zeros to the two original vectors,
this will cause additional zeros to trail the desired solution. When calculating
the ordinary convolution of two sequences, one often chooses to zero-pad the
sequences to more than twice their original length to ensure that the number of
elements in the final sequence is a power of two. In this way, the convolution
can be calculated using the very efficient FFT and IFFT algorithms. This
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allows us to calculate the convolution in on the order of N log(N) operations,
rather than on the order of N2 operations.

Consider, for example, the convolution of the two ten-element sequences

{1, . . . , 1}, and {1, 2, . . . , 10}.

One way to perform this calculation is to extend both sequences to 32-element
sequences where the last 22 elements are all zero. One might give the following
commands to MATLAB r© to define the sequences

a = [ones(size(1:10)) zeros(size(1:22))]
b = [1:10 zeros(size(1:22))]

The first command produces a sequence with ten ones and 22 zeros. The
second produces a sequence composed of the numbers one through ten followed
by 22 zeros. To calculate the convolution, one can give the command

ifft(fft(a) .* fft(b))

The .* command tells MATLAB to perform an element by element multi-
plication on two sequences. The rest of the command causes MATLAB to
calculate the IFFT of the element by element product of the FFTs of the
sequences a and b.

4.9 Other Perspectives on Zero-padding

We have seen one reason to zero-pad—it can allow one to calculate an (or-
dinary) convolution using a circular convolution. There are two more reasons
one might want to zero-pad.

Suppose that one has samples, but the number of samples is not a power of
two (or some other number of samples that makes using an FFT a possibility).
Then one might choose to add samples in order to benefit from the efficiency
of the FFT.

Suppose that one adds zeros to a sequence of measurements that one
has made. When calculating the DFT of the “inflated” sequence one finds
that the maximum frequency of interest is still Fs/2—is still the Nyquist
frequency. What is changed is the number of frequency bands into which the
frequency band [0, Fs/2] is broken. When one zero-pads, one adds more points
to the DFT. Thus, adding zeros in the time domain—zero-padding—leads to
interpolation in the spectral domain.

Sometimes, one adds zeros in order to perform this spectral interpolation.
This is a third reason to zero-pad. Note that one has not gained information
by zero-padding—one is still calculating essentially the same approximation
to the Fourier transform. One is approximating the Fourier transform at more
frequency points using the same time-limited, sampled signal.
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4.10 MATLAB and the Serial Port

In order to use MATLAB to process data, one must transfer the data from
the measurement instrument—in our case, the ADuC841—to MATLAB. We
will do this by using the computer’s serial port—its UART. Using a serial
port is very much like reading from, or writing to, a file. To set up and use a
UART from MATLAB, one uses the commands serial, set, fopen, fprintf,
fread, fclose, freeserial, and delete. Use the MATLAB help command
(or the help window) to get more detail about how these commands are used.

4.11 The Experiment

In this laboratory, we build a system that measures the FFT of a signal more
or less on the fly. Use the ADuC841 to sample a signal, and then transmit the
measured values to MATLAB across a serial port. Have MATLAB take the
measured signal values, perform an FFT on them, and display the magnitude
of the FFT for the user.

In greater detail, write a program that causes the ADuC841 to sample
2,000 times per second. Set up the ADuC841’s UART to transmit and receive
at 57,600 baud. Program the ADuC841 to transmit 512 measurements (1,024
bytes) each time the UART receives the letter “s.”

Set up MATLAB to control the computer’s serial port. Have MATLAB
open the serial port, write the letter “s” to it, and then receive the 1,024
bytes. Once the measurements have been read in, reconstruct the signal mea-
surements and have MATLAB calculate and display the absolute value of the
FFT.

4.12 Exercises

1. Consider the following sequences
• S1 ≡ {1, 0, 0, 0, 0},
• S2 ≡ {1,−1, 1,−1}.
a) Calculate the DFT of the sequences.
b) Calculate the norms of the sequences and the transformed sequences.
c) Compare the norms of the sequences and the transformed sequences,

and see if the results agree with the theory presented in the chapter.
2. Why would it be inappropriate to speak of the FFT of the sequence S1 of

Exercise 1?
3. Using the method of Sections 4.4 and 4.5 and the results of Exercise 1,

calculate the DFT of

{1, 1, 0,−1, 0, 1, 0,−1}.
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4. Note: you may wish to make use of [18] to gather the information necessary
to do this exercise.
a) Give a brief description of the prime-factor algorithm (PFA).
b) Historically, which came first—the Cooley-Tukey FFT or the PFA?

5. Using MATLAB, calculate the DFT of the sequence

sin(2πfnTs), n = 0, . . . , 255

for Ts = 1ms and f = 1, 10, 100, and 500 Hz. Plot the absolute value of
the FFT against frequency. (Make sure that the frequency axis in the plot
is defined in a reasonable way.) Explain what each plot “says” about the
signal.

6. Using MATLAB, calculate the DFT of the sequences e−knTs , n = 0, . . . 255
for Ts = 10ms and k = 1, 2, 4, and 8. Plot the absolute value of the FFT
against frequency. (Make sure that the frequency axis in the plot is defined
in a reasonable way.)

7. Calculate the circular convolution of the sequence

an =

⎧
⎨

⎩

0, n = 0, . . . , 50
1, n = 51, . . . , 204
0, n = 205, . . . , 255

with itself by using the FFT and the IFFT. Plot the resulting samples
against their sample numbers. Submit the MATLAB code along with the
answer. (You may wish to make use of the MATLAB commands ones and
zeros to help build up the initial vector.) Note that because of rounding
errors, the inverse discrete Fourier transform may have a very small imagi-
nary component. This can lead the plotting routine supplied by MATLAB
to give odd results. You may wish to plot the value of the real part of the
IDFT calculated by MATLAB. This can be achieved by using the real
command provided by MATLAB.

8. Calculate the convolution of the two sequences

S1 ≡ {1, 2, . . . , k, . . . , 20}
S2 ≡ {1, 4, . . . , k2, . . . , 400}

by zero-padding and using the MATLAB commands FFT and IFFT.
9. Sample a 10 Hz sinewave at the times t = kTs, k = 0, . . . , 255 where the

sampling period is 10 ms.
a) Calculate the FFT of this vector of 256 samples. Plot the absolute

value of the FFT against frequency. Make sure that the frequency
axis is properly normalized.

b) Now, zero-pad the vector out to a length of 212 samples. Once again,
plot the absolute value of the FFT against frequency. Make sure that
the frequency axis is properly normalized.

c) Compare the results of the previous two sections, and explain the
similarities and differences that you note.
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Windowing

Summary. The DFT is an approximation to the Fourier transform of a signal. The
input to the DFT is always a sequence of samples taken over a finite time period.
This “truncation” of the signal changes the Fourier transform—the spectrum—of
the signal. In this chapter, we learn about windowing; we learn how to control the
effect that truncation has on a signal’s spectrum.

Keywords. spectral leakage, sidelobes, windowing, Bartlett, Hann.

5.1 The Problems

By the nature of the way that we make measurements, we are always looking
at a finite-length sample of any signal. Let us define the function

ΠT (t) ≡
{

1 |t| < T/2
0 |t| ≥ T/2 .

It is easy to show [7] that the Fourier transform of ΠT (t) is

F(ΠT (t))(f) =

{
T f = 0
T sin(πfT )

πfT f �= 0
≡ T sinc(fT ). (5.1)

When considering a T second snippet of a signal s(t), one is essentially
considering ΠT (t)s(t). From the standard properties of the Fourier transform,
we find that

F(ΠT (t)s(t))(f) = S(f) ∗ [T sinc(fT )]

where the asterisk is once again used to represent the convolution operator.
Consider what the result of this operation is when the signal is a cosine—

when s(t) = cos(2πFt). The Fourier transform of the signal is

S(f) = (1/2)[δ(f + F ) + δ(f − F )].
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As convolution with a delta function copies the function being convolved to
the location of the delta function, we find that

F(ΠT (t)s(t))(f) = (T/2)[sinc((f + F )T ) + sinc((f − F )T )].

That is, the nice, clean delta functions are “smeared out” into sinc functions
(and this is in perfect accord with the theory of Chapter 3). See Figure 5.1
for an example of such smearing when T = 0.2 s and F = 20Hz. Note that
the width of the central lobe of the sinc function is 10 = 2/0.2. That is, the
width of the central lobe is twice the reciprocal of the amount of time over
which the measurement is performed. In general, width × T ≈ 2. (This is a
kind of “uncertainty principle.” See Section 3.3 for a more precisely stated
uncertainty principle.)
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Fig. 5.1. The Fourier transform of Π0.2(t) cos(2π20t)

There is a second difficulty. Time limiting not only smears the Fourier
transform around the “correct” frequency, but also causes the Fourier trans-
form to extend across all frequencies. In addition to the central lobe, there are
now additional lobes, sidelobes, as well. The smearing of the Fourier transform
that is caused by time limiting a signal is commonly referred to as spectral
leakage.

We would like to cure the local smearing and the appearance of energy at
frequencies other than the frequency we are trying to measure. Unfortunately,
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we cannot take care of both problems at once. Generally speaking, what helps
with one problem exacerbates the other. Let us see why.

5.2 The Solutions

The Fourier transform of ΠT (t) decays relatively slowly—like 1/f . Why?
Because ΠT (t) is not continuous. Discontinuous functions—functions with
jumps—have a lot of energy at high frequencies. When one multiplies a
signal—even a very smooth signal—by ΠT (t), one generally forces the func-
tion to be discontinuous at the endpoints, t = ±T/2. This discontinuity is
reflected in the signal’s Fourier transform by its slow decay. To take care
of this problem, one must see to it that the sampled values approach zero
continuously at the edges of the interval in which the measurement is being
made.

Suppose that the function that one has measured is ΠT (t)s(t). How can
one smooth the edges of this function? What one must do is multiply by a
smooth function, w(t), whose support is located in the region t ∈ [−T/2, T/2]
and for which w(T/2) = w(−T/2) = 0. Multiplying ΠT (t)s(t) by such a
function should get rid of some of the high-frequency energy that we saw
previously. Of course a function that goes to zero smoothly inside this region
will tend to emphasize the region near t = 0 more than it was emphasized
previously. One can consider this emphasis to be something that shrinks the
effective time over which the measurement was taken. As we have seen (in
Section 3.3) that the shorter the time period over which the measurement is
taken, the more spread out the Fourier transform of the resulting signal will
be, we must expect that after multiplication by w(t), the Fourier transform of
the measured signal will have less energy at high frequencies—the sidelobes
will be smaller, but the Fourier transform will have a more smeared central
lobe.

The functions w(t) are known as window functions, and the process of
multiplying the sampled function by a window function is known as windowing
the data. There are several standard window functions. Each function strikes
a somewhat different balance between the width of the central lobe and the
rate at which the high-frequency component decays.

5.3 Some Standard Window Functions

We now present three standard window functions; there are many more. When
characterizing window functions, we consider:

1. The width of the central peak of the window function’s Fourier transform.
The width is defined as the distance between the first zero to the left of
the central peak and the first zero to the right of the central peak.
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2. The rate at which the sidelobes of the Fourier transform of the window
function decay.

5.3.1 The Rectangular Window

The window of the previous section, w(t) = ΠT (t), is called the rectangular
window. Its Fourier transform is

F(ΠT (t))(f) = T sinc(fT ).

The first zero to the left of the central maximum occurs at f = −1/T , and
the first zero to the right of the central maximum occurs at f = 1/T . Thus,
the width of the central lobe is 2/T . Additionally, as

|T sinc(fT )| =
∣∣∣∣
sin(πfT )

πf

∣∣∣∣ ≤
1

π|f | ,

we find that the sidelobes decay like 1/f . Thus, the rectangular window has
a narrow main lobe, but its high-frequency terms decay slowly.

5.3.2 The Triangular Window

The triangle function is defined as

ΛT (t) =

⎧
⎨

⎩

(t + T/2)/(T/2), −T/2 ≤ t ≤ 0
(T/2 − t)/(T/2), 0 < t ≤ T/2
0, |t| > T/2

=
2
T

ΠT/2(t) ∗ ΠT/2(t).

As the Fourier transform of a convolution is the product of the Fourier trans-
forms of the functions, by making use of (5.1) we find that

F(ΛT (t))(f) =
2
T

(
T

2

)2

sinc2(fT/2) =
T

2
sinc2(fT/2).

As the first zeros of sinc(fT/2) are at f = ±2/T , the transform has a main
lobe that is twice as wide as the “unenhanced” window we used previously.
However, the high-frequency terms decay like 1/f2 now.

The window based on this idea is known as the Bartlett window.

5.4 The Raised Cosine Window

Consider the function

w(t) = ΠT (t)(1 + cos(2πt/T )).
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At t = ±T/2, this function is not only continuous; it is once continuously
differentiable.

It is not hard to show (see Exercise 3) that the Fourier transform of this
function is

T
sinc(fT )
1 − (fT )2

.

Note that there are zero-canceling poles at f = −1/T, 0, and f = 1/T . Thus,
the zeros that bound the main lobe are located at f = ±2/T , and the width
of the main lobe is 4/T—just as it is for the Bartlett window. However, the
decay at high frequencies is 1/f3. Once again, we can trade a wide main lobe
for rapid decay of high frequencies.

The window based on this idea is known as the Hann or Hanning window.
(But note that MATLAB r© uses the names Hann and Hanning to define two
slightly different windows.) There are many other window functions. We will
not discuss them.

5.5 A Remark on Widths

We have defined the width of the main lobe to be the distance between the
zeros of the main lobe. There are other ways of defining the width of the
main lobe—and some of the other definitions distinguish between lobes more
effectively than our simple definition.

5.6 Applying a Window Function

On a conceptual level, it is easiest to understand how windowing samples
affects the spectral content of the sampled signal by considering multiply-
ing the continuous-time signal by a continuous-time window. In practice, one
generally samples the input signals “as is.” After sampling the signals, one
multiplies the samples by the relevant values of the window function. That
is, rather than sampling x(t)w(t), one samples x(t), and then multiplies the
sampled values x(nTs) by the samples of the window function, w(nTs).

MATLAB has predefined window functions like hann and bartlett. These
functions take as their argument the number of samples to be windowed.
Suppose that the MATLAB variable x has 256 unwindowed samples of a
signal. If one would like to apply a raised cosine (Hann) window to the samples
and then calculate the FFT of the resulting sequence, one can give MATLAB
the command

y = fft(x .* hann(256)’);

The “prime” (apostrophe) after the function call hann(256) takes the window
“vector” and transposes it. This changes the window vector from a column
vector into a row vector. (Generally speaking, x is a row vector, and MATLAB
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requires that both items in an element by element operation have the same
dimensions. Also note that the ’ operator actually calculates the complex con-
jugate transpose of a matrix. If one has a complex vector whose unconjugated
transpose is needed, one uses the .’ command.)

Suppose that one would like to zero-pad and window a set of samples.
Which operation should be carried out first? The reason one windows a set
of samples is to make sure that there are no “artificial” discontinuities at the
ends of the dataset. It is, therefore, clear that one must window a dataset
before zero-padding. Otherwise, the added zeros will add the artificial jumps
that windowing is supposed to prevent.

5.7 A Simple Comparison

Using MATLAB, we generated the input to, and the output from, a DFT
when the input was cos(2π9.9t), Ts = 0.04, and 200 samples were taken. We
calculated the DFT of the data using a rectangular window of length 200,
a Bartlett window of length 200, and a Hann window of length 200. The
output of the DFT is given in Figure 5.2. Note that the roll-off—the decay of
the high frequencies—is slowest in the rectangular window and fastest in the
Hann window.
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Fig. 5.2. The data after processing by the DFT
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5.8 MATLAB’s Window Visualization Tool

One nice way to “experience” the different windows is to use the MATLAB
window design and analysis tool. Open a MATLAB window, and type in
wintool. From that point on, everything is self-explanatory.

5.9 The Experiment

Modify the programs written for the experiment of Chapter 4 to use several
different window functions. It will probably be simplest to use the built-in
window functions provided by MATLAB. Look up the commands bartlett
and hann.

Write programs to use the Bartlett window, the Hann window, and at least
one window that has not been discussed in the text. Examine the output of
each program when the input to the system is a sinewave. Explain the results
in terms of the properties of the window function and the DFT.

5.10 Exercises

1. Use the definition of the Fourier transform to calculate the Fourier trans-
form of ΠT (t).

2. Use the MATLAB wintool command to compare the Hann window and
the Hamming window.

3. Calculate the Fourier transform of the function

w(t) = ΠT (t)(1 + cos(2πt/T )).

4. Calculate the windowed DFT of the sequence sin(2πfnTs), n = 0, . . . , 255
when f = 10 and Ts = 1ms, and plot the absolute value of the windowed
DFT. Make use of:
a) the rectangular window,
b) the Bartlett window, and
c) the Hanning window.

Compare the resulting DFTs.
5. Calculate the DFT of the sequence

yk = sin(2π50kTs) + 0.01 sin(2π60kTs), k = 0, . . . , 1023, Ts = 1ms.

Plot the absolute value of the DFT (with a properly scaled frequency
axis). Then recalculate the DFT using a 1,024-point Hanning window,
and plot the absolute value of the resulting sequence (with a properly
scaled frequency axis). Explain the differences in the two plots.

6. Explain what apodization is and how it relates to windowing.
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Signal Generation with the Help of MATLAB

Summary. One tool that an engineer often needs is a signal generator. Given a
microprocessor with a stable time-base and a nice size block of FLASH memory, it
is easy to build a simple signal generator. In this very practically oriented chapter,
we show how.

Keywords. signal generator, MATLAB, microprocessor.

6.1 Introduction

The ADuC841 has 64 kB of FLASH1 program memory from which the micro-
processor can read while a program is executing. Our signal generator will be
implemented by storing the waveform we would like to output in the FLASH
memory and then using one of the ADuC841’s timers to control the speed at
which the waveform is played back.

Of course, before we can play back a waveform, we must “record” it. We
will make all of our “recordings” using MATLAB r©.

6.2 A Simple Sinewave Generator

Let us consider how we can “record” a sinewave in a way that will be useful
to us. It is our intention to play back our sinewave from the microprocessor’s
memory.

MATLAB can be used to produce a vector with one full period of a
sinewave that has been sampled 256 times. The 256 samples are a good start.
Next, the samples must be put in a form that is appropriate for the micropro-
cessor. To do this, the samples must be output in hexadecimal, and they must
1 FLASH memory is non-volatile memory that can be electrically erased and re-

programmed.
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correspond to positive voltages (as the ADuC841’s DAC converts to positive
voltages). Note that MATLAB has a command, dec2hex, that takes an inte-
ger as input and produces a string whose characters are the hex digits that
correspond to the decimal number that was input. What we would ideally like
is to convert the vector of numbers into a set of instructions to the compiler
that will make the microprocessor store the values in a meaningful way.

It turns out that getting everything properly formatted is not hard. MAT-
LAB has a command called fprintf that is very similar to the C command
of the same name. By using the MATLAB file commands and the fprintf
command, one can cause MATLAB to output a file of the form

sine: DB 000H
DB 00FH

.

.

.

This file can then be “pasted” into a program written in the ADuC841’s
assembly language.

6.3 A Simple White Noise Generator

Not only can one use MATLAB to help write a sinewave generator, one can
use it to make a white noise generator. MATLAB has several commands for
producing white noise. The one that is most useful for our purposes is the
rand command. The rand(size([1:N])) command produces a vector that
is N elements long for which each element is (more or less) independent of
each other element, and each element is a sample of a value from a random
variable that is uniformly distributed over [0, 1]. Using fprintf, it is easy to
cause MATLAB to generate a long list of (reasonably) uncorrelated numbers.

6.4 The Experiment

1. Cause MATLAB to generate 256 samples of a sinewave.
2. Have MATLAB store the samples in a format that is appropriate for an

assembly language program.
3. Write an assembly language program that reads the values of the sinewave

and outputs these values to DAC0.
4. Write the program in such a way that the UART can be used to change

the frequency of the sinewave. (Have the program change the value(s) of
the timer reload register(s) according to the value of the input from the
UART.)

5. Examine the output of DAC0, and make sure that the period that is seen
corresponds to the predicted period.
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6. Next, produce a set of 4,096 samples of random noise and incorporate these
values into a program that is similar to the program designed above.

7. Look at the spectrum of the signal produced in this way on an oscilloscope
operating in FFT mode. What do you see?

6.5 Exercises

1. Define the term DCO. Please reference a source for the definition.
2. In what way does the MATLAB command fprintf differ from C’s

fprintf command?
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The Spectral Analysis of Random Signals

Summary. When one calculates the DFT of a sequence of measurements of a
random signal, one finds that the values of the elements of the DFT do not tend
to “settle down” no matter how long a sequence one measures. In this chapter,
we present a brief overview of the difficulties inherent in analyzing the spectra of
random signals, and we give a quick survey of a solution to the problem—the method
of averaged periodograms.

Keywords. random signals, method of averaged periodograms, power spectral den-

sity, spectral estimation.

7.1 The Problem

Suppose that one has N samples of a random signal1, Xk, k = 0, . . . , N−1, and
suppose that the samples are independent and identically distributed (IID).
Additionally, assume that the random signal is zero-mean—that E(Xk) = 0.
The expected value of an element of the DFT of the sequence, am, is

E(am) = E

(
N−1∑

k=0

e−2πjkm/NXk

)
= 0.

Because the signal is zero-mean, so are all of its Fourier coefficients. (All this
really means is that the phases of the am are random, and the statistical
average of such am is zero.)

On the other hand, the power at a given frequency is (up to a constant of
proportionality) |am|2. The expected value of the power at a given frequency
1 In this chapter, capital letters represent random variables, and lowercase letters

represent elements of the DFT of a random variable. As usual, the index k is used
for samples and the index m for the elements of the DFT. In order to minimize
confusion, we do not use the same letter for the elements of the sequence and for
the elements of its DFT.
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is E(|am|2) and is non-negative. If one measures the value of |am|2 for some
set of measurements, one is measuring the value of a random variable whose
expected value is equal to the item of interest. One would expect that the
larger N was, the more certainly one would be able to say that the measured
value of |am|2 is near the theoretical expected value. One would be mistaken.

To see why, consider a0. We know that

a0 = X0 + · · · + XN−1.

Assuming that the Xk are real, we find that

|a0|2 =
N−1∑

n=0

N−1∑

k=0

XnXk =
N−1∑

n=0

X2
k +

N−1∑

n=0

N−1,k �=n∑

k=0

XnXk.

Because the Xk are independent, zero-mean random variables, we know that
if n �= k, then E(XnXk) = 0. Thus, we see that the expected value of |a0|2 is

E(|a0|2) = NE(X2
k). (7.1)

We would like to examine the variance of |a0|2. First, consider E(|a0|4).
We find that

E(|a0|4) = NE(X4
i ) + 3N(N − 1)E2(X2

i ).

(See Exercise 5 for a proof of this result.) Thus, the variance of the measure-
ment is

E(|a0|4) − E2(|a0|2) = NE(X4
i ) + 2N2E2(X2

i ) − 3NE2(X2
i )

= Nσ2
X2 + 2(N2 − N)E2(X2

i ).

Clearly, the variance of |a0|2 is O(N2), and the standard deviation of |a0|2 is
O(N). That is, the standard deviation is of the same order as the measure-
ment. This shows that taking larger values of N—taking more measurements—
does not do much to reduce the uncertainty in our measurement of |a0|2. In
fact, this problem exists for all the am, and it is also a problem when the
measured values, Xk, are not IID random variables.

7.2 The Solution

We have seen that the standard deviation of our measurement is of the same
order as the expected value of the measurement. Suppose that rather than
taking one long measurement, one takes many smaller measurements. If the
measurements are independent and one then averages the measurements, then
the variance of the average will decrease with the number of measurements
while the expected value will remain the same.

Given a sequence of samples of a random signal, {X0, . . . , XN−1}, define
the periodograms, Pm, associated with the sequence by
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Pm ≡ 1
N

∣∣∣∣∣

N−1∑

k=0

e−2πjkm/NXk

∣∣∣∣∣

2

, m = 0, . . . , N − 1.

The value of the periodogram is the square of the absolute value of the mth
element of the DFT of the sequence divided by the number of elements in the
sequence under consideration. The division by N removes the dependence that
the size of the elements of the DFT would otherwise have on N—a dependence
that is seen clearly in (7.1).

The solution to the problem of the non-decreasing variance of the estimates
is to average many estimates of the same variable. In our case, it is convenient
to average measurements of Pm, and this technique is known as the method
of averaged periodograms.

Consider the MATLAB r© program of Figure 7.1. In the program, MAT-
LAB takes a set of 212 uncorrelated random numbers that are uniformly dis-
tributed over (−1/2, 1/2), and estimates the power spectral density of the
“signal” by making use of the method of averaged periodograms. The output
of the calculations is given in Figure 7.2. Note that the more sets the data
were split into, the less “noisy” the spectrum looks. Note too that the number
of elements in the spectrum decreases as we break up our data into smaller
sets. This happens because the number of points in the DFT decreases as the
number of points in the individual datasets decreases.

It is easy to see what value the measurements ought to be approaching. As
the samples are uncorrelated, their spectrum ought to be uniform. From the
fact that the MATLAB-generated measurements are uniformly distributed
over (−1/2, 1/2), it easy to see that

E(X2
k) =

∫ 1/2

−1/2

α2 dα =
α3

3

∣∣∣∣
1/2

−1/2

=
1
12

= 0.083.

Considering (7.1) and the definition of the periodogram, it is clear that the
value of the averages of the 0th periodograms, P0, ought to be tending to 1/12.
Considering Figure 7.2, we see that this is indeed what is happening—and the
more sets the data are split into, the more clearly the value is visible. As the
power should be uniformly distributed among the frequencies, all the averages
should be tending to this value—and this too is seen in the figure.

7.3 Warm-up Experiment

MATLAB has a command that calculates the average of many measurements
of the square of the coefficients of the DFT. The command is called psd (for
power spectral density). (See [7] for more information about the power spectral
density.) The format of the psd command is psd(X,NFFT,Fs,WINDOW) (but
note that in MATLAB 7.4 this command is considered obsolete). Here, X is the
data whose PSD one would like to find, NFFT is the number of points in each
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% A simple program for examining the PSD of a set of

% uncorrelated numbers.

N = 2^12;

% The next command generates N samples of an uncorrelated random

% variable that is uniformly distributed on (0,1).

x = rand([1 N]);

% The next command makes the ‘‘random variable’’ zero-mean.

x = x - mean(x);

% The next commands estimate the PSD by simply using the FFT.

y0 = fft(x);

z0 = abs(y0).^2/N;

%The next commands break the data into two sets and averages the

%periodograms.

y11 = fft(x(1:N/2));

y12 = fft(x(N/2+1:N));

z1 = ((abs(y11).^2/(N/2)) + (abs(y12).^2/(N/2)))/2;

%The next commands break the data into four sets and averages the

%periodograms.

y21 = fft(x(1:N/4));

y22 = fft(x(N/4+1:N/2));

y23 = fft(x(N/2+1:3*N/4));

y24 = fft(x(3*N/4+1:N));

z2 = (abs(y21).^2/(N/4)) + (abs(y22).^2/(N/4));

z2 = z2 + (abs(y23).^2/(N/4)) + (abs(y24).^2/(N/4));

z2 = z2 / 4;

%The next commands break the data into eight sets and averages the

%periodograms.

y31 = fft(x(1:N/8));

y32 = fft(x(N/8+1:N/4));

y33 = fft(x(N/4+1:3*N/8));

y34 = fft(x(3*N/8+1:N/2));

y35 = fft(x(N/2+1:5*N/8));

y36 = fft(x(5*N/8+1:3*N/4));

y37 = fft(x(3*N/4+1:7*N/8));

y38 = fft(x(7*N/8+1:N));

z3 = (abs(y31).^2/(N/8)) + (abs(y32).^2/(N/8));

z3 = z3 + (abs(y33).^2/(N/8)) + (abs(y34).^2/(N/8));

z3 = z3 + (abs(y35).^2/(N/8)) + (abs(y36).^2/(N/8));

z3 = z3 + (abs(y37).^2/(N/8)) + (abs(y38).^2/(N/8));

z3 = z3 / 8;

Fig. 7.1. The MATLAB program



7.4 The Experiment 61

%The next commands generate the program’s output.

subplot(4,1,1)

plot(z0)

title(’One Set’)

subplot(4,1,2)

plot(z1)

title(’Two Sets’)

subplot(4,1,3)

plot(z2)

title(’Four Sets’)

subplot(4,1,4)

plot(z3)

title(’Eight Sets’)

print -deps avg_per.eps

Fig. 7.1. The MATLAB program (continued)

FFT, Fs is the sampling frequency (and is used to normalize the frequency
axis of the plot that is drawn), and WINDOW is the type of window to use. If
WINDOW is a number, then a Hanning window of that length is used. Use the
MATLAB help command for more details about the psd command.

Use the MATLAB rand command to generate 216 random numbers. In
order to remove the large DC component from the random numbers, subtract
the average value of the numbers generated from each of the numbers gener-
ated. Calculate the PSD of the sequence using various values of NFFT. What
differences do you notice? What similarities are there?

7.4 The Experiment

Note that as two ADuC841 boards are used in this experiment, it may be
necessary to work in larger groups than usual.

Write a program to upload samples from the ADuC841 and calculate their
PSD. You may make use of the MATLAB psd command and the program you
wrote for the experiment in Chapter 4. This takes care of half of the system.

For the other half of the system, make use of the noise generator imple-
mented in Chapter 6. This generator will be your source of random noise and
is most of the second half of the system.

Connect the output of the signal generator to the input of the system that
uploads values to MATLAB. Look at the PSD produced by MATLAB. Why
does it have such a large DC component? Avoid the DC component by not
plotting the first few frequencies of the PSD. Now what sort of graph do you
get? Does this agree with what you expect to see from white noise?

Finally, connect a simple RC low-pass filter from the DAC of the signal
generator to ground, and connect the filter’s output to the A/D of the board
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Fig. 7.2. The output of the MATLAB program when examining several different
estimates of the spectrum

that uploads data to MATLAB. Observe the PSD of the output of the filter.
Does it agree with what one expects? Please explain carefully.

Note that you may need to upload more than 512 samples to MATLAB so
as to be able to average more measurements and have less variability in the
measured PSD. Estimate the PSD using 32, 64, and 128 elements per window.
(That is, change the NFFT parameter of the pdf command.) What effect do
these changes have on the PSD’s plot?
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7.5 Exercises

1. What kind of noise does the MATLAB rand command produce? How
might one go about producing true normally distributed noise?

2. (This problem reviews material related to the PSD.) Suppose that one
passes white noise, N(t), whose PSD is SNN (f) = σ2

N through a filter
whose transfer function is

H(f) =
1

2πjfτ + 1
.

Let the output of the filter be denoted by Y (t). What is the PSD of the
output, SY Y (f)? What is the autocorrelation of the output, RY Y (τ)?

3. (This problem reviews material related to the PSD.) Let H(f) be the
frequency response of a simple R-L filter in which the voltage input to
the filter, Vin(t) = N(t), enters the filter at one end of the resistor, the
other end of the resistor is connected to an inductor, and the second side
of the inductor is grounded. The output of the filter, Y (t), is taken to be
the voltage at the point at which the resistor and the inductor are joined.
(See Figure 7.3.)
a) What is the frequency response of the filter in terms of the resistor’s

resistance, R, and the inductor’s inductance, L?
b) What kind of filter is being implemented?
c) What is the PSD of the output of the filter, SY Y (f), as a function of

the PSD of the input to the filter, SNN (f)?

Fig. 7.3. A simple R-L filter
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4. Using Simulink r©, simulate a system whose transfer function is

H(s) =
s

s2 + s + 10,000
.

Let the input to the system be band-limited white noise whose bandwidth
is substantially larger than that of the filter. Use a “To Workspace” block
to send the output of the filter to MATLAB. Use the PSD function to calcu-
late the PSD of the output. Plot the PSD of the output against frequency.
Show that the measured bandwidth of the output is in reasonable accord
with what the theory predicts. (Remember that the PSD is proportional
to the power at the given frequency, and not to the voltage.)

5. Let the random variables X0, . . . , XN−1 be independent and zero-mean.
Consider the product

(X0 + · · ·+XN−1)(X0 + · · ·+XN−1)(X0 + · · ·+XN−1)(X0 + · · ·+XN−1).

a) Show that the only terms in this product that are not zero-mean are
of the form X4

k or X2
kX2

n, n �= k.
b) Note that in expanding the product, each term of the form X4

k appears
only once.

c) Using combinatorial arguments, show that each term of the form

X2
kX2

n appears
(

4
2

)
times.

d) Combine the above results to conclude that (as long as the samples
are real)

E(|a0|4) = NE(X4
k) + 6

N(N − 1)
2

E2(X2
k).
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The General Structure of Sampled-data
Systems

Summary. In this chapter we consider the general structure of sampled-data sys-
tems. We will see that in sampled-data systems—whether they are used in the
analysis of discrete-time signals as in Part I or to implement digital filters as in
Part III—one must sample an analog signal, and often one must convert digitized
samples of a signal back into an analog signal. Understanding how these conversions
are made is the purpose of this part of the book—of Part II.

Keywords. sampled-data systems, analog to digital converters, digital to analog

converters.

8.1 Systems for Spectral Analysis

When using digital techniques to analyze signals, one generally uses a system
like that of Figure 8.1. The first element of the system takes the analog signal
to be analyzed and converts it into a sequence of digital values; such elements
are known as analog to digital converters. Over the next several chapters, we
discuss several such systems.

Fig. 8.1. A typical system used in the spectral analysis of signals
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8.2 Systems for Implementing Digital Filters

In Part III, we describe how one implements digital filters—filters that are
implemented using a computer or microprocessor. Such systems generally have
an analog input that must be converted into a stream of discretized values.
In addition, the output of the digital system—the computer, microprocessor,
or microcontroller—must be converted from a stream of discretized values
into an analog signal. A sample system is shown in Figure 8.2. The element
that converts a digital value into an analog signal—into a voltage—is called
a digital to analog converter.

Fig. 8.2. A typical system used in the digital filtering of signals
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The Operational Amplifier: An Overview

Summary. Before describing some of the converters that are available, we briefly
consider the properties of the operational amplifier—the op-amp. The op-amp is a
building block in many of the circuits described in the following chapters.

Keywords. operational amplifier, op-amp, buffer, inverting amplifier, non-inverting

amplifier.

9.1 Introduction

The operational amplifier (or op-amp) is a circuit element that amplifies the
difference of the voltages of its inputs. (For more information about op-amps
and their history, the interested reader may wish to consult [12].) Let the
two voltage inputs to the op-amp be denoted by V+ and V−. Then a first
approximation to the output of the op-amp is Vout ≈ A(V+ − V−) where A,
the amplification, is assumed to be a very large number. The standard symbol
for an op-amp is given in Figure 9.1. An op-amp’s input impedance is generally
very large, and its output impedance is generally very small.

9.2 The Unity-gain Buffer

It is easy to make a unity-gain buffer using an op-amp. A unity-gain buffer is
a circuit whose output voltage (ideally) equals its input voltage, whose input
impedance is very large, and whose output impedance is low. A unity-gain
buffer is often used to “transfer” a voltage from one subsystem to another
without loading—without affecting—the subsystem from which the signal
originates.

Consider the circuit of Figure 9.2. Making use of our first approximation
to the op-amp, we find that
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Fig. 9.1. The standard symbol for the operational amplifier

Vout = A(Vin − Vout) = AVin − AVout.

Solving for Vout, we find that

Vout =
A

A + 1
Vin.

As long as A >> 1, it is clear that Vout ≈ Vin. Because of the op-amp’s large
input impedance, there is essentially no current flowing from the source of Vin

into the op-amp. Because of the op-amp’s low output impedance, the output
of the op-amp can source a reasonable amount of current without the output
voltage deviating from its anticipated value.

Fig. 9.2. A unity-gain buffer
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9.3 Why the Signal is Fed Back to V−

Let us consider a slightly more detailed model of the op-amp. Rather than as-
suming that the op-amp instantaneously multiplies the difference of its inputs
by A, let us assume that (in the Laplace—the s—domain)

Vout(s) =
A

sτ + 1
(V+(s) − V−(s)).

This associates a time constant, τ , with the op-amp and “means” that the
op-amp does not react instantaneously to changes in its inputs. Using this
model, we find that the relationship between the input and the output of the
circuit of Figure 9.2 is

Vout(s) =
A

sτ + 1
(Vin(s) − Vout(s)) ⇒ Vout(S) =

A

sτ + 1 + A
Vin(s).

The transfer function of the unity-gain buffer is

T (s) =
A

sτ + 1 + A
.

This transfer function has a single pole at s = (−1 − A)/τ . As this pole is in
the left half-plane, the buffer is stable [6].

Consider the system of Figure 9.3. We find that

Vout(s) =
A

sτ + 1
(Vout(s) − Vin(s)) ⇒ Vout(S) =

−A

sτ + 1 − A
Vin(s).

Here, the lone pole is located at (−1+A)/τ . As long as A > 1, something that
is true for all op-amps, this system is unstable. Generally speaking, in order
for an op-amp-based system to be stable, the feedback must be connected to
V−—to the inverting input.

9.4 The “Golden Rules”

By making use of two simple “golden” rules (that are simplifications of how
op-amps really behave), one can often “intuit” how an op-amp circuit will
behave. The first rule is that when an op-amp circuit that employs feedback is
operating correctly, the difference in voltage between the two input terminals
of the op-amp, the difference between V+ and V−, is negligible. The second
rule is that (to a good approximation) no current enters (or leaves) the two
inputs of the op-amp.

Looking back at Figure 9.2, we see that making use of the first rule, Vin =
V+ = V− = Vout. Additionally, from the second rule it is clear that the input
to the buffer draws no current—and cannot load the circuit that provides the
input, Vin.
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Fig. 9.3. An unstable unity-gain buffer

9.5 The Inverting Amplifier

Consider the circuit of Figure 9.4. Let us use the golden rules to examine what
the circuit does. First of all, because the inverting (V−) and non-inverting (V+)
inputs are assumed to be at the same voltage, the voltage at the non-inverting
input must be 0 V. One says that there is a virtual ground at the inverting
input. This being the case, the current flowing in the resistor R1 must be
Vin/R1 amperes. Because no current flows into an op-amp (according to the
second rule), the voltage drop across R2 must be (Vin/R1)R2. As the drop
is from the voltage of the inverting input—which is approximately zero—the
output voltage must be

Vout = −R2
R1

Vin.

This formula is valid for reasonably low-frequency signals. The circuit is called
an inverting amplifier because the sign of the output is always opposite to that
of the input.

9.6 Exercises

1. By using the golden rules, show that the circuit of Figure 9.3 “should be”
(stability considerations aside) a unity-gain buffer.

2. Show that the circuit of Figure 9.5 is a non-inverting amplifier and that
(at low frequencies)

Vout =
(

1 +
R2
R1

)
Vin.



9.6 Exercises 73

Fig. 9.4. An inverting amplifier

Fig. 9.5. A non-inverting amplifier
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A Simple Digital to Analog Converter

Summary. There are many ways of implementing digital to analog converters
(D/As or DACs)—circuits that take an input that consists of “ones” and “zeros” and
convert the inputs into an analog output signal. (Often the “ones” are a reference
voltage, Vref and the “zeros” are 0 V.) In this chapter, we present one simple, albeit
not very practical, DAC. This DAC can be used with many types of microprocessors
and can be considered a purely passive DAC.

Keywords. digital to analog converter, DAC, passive DAC, buffer.

10.1 The Digital to Analog Converter

Consider the circuit of Figure 10.1. Let the inputs, b0, b1, and b2 be either
0 V or Vref . Let us consider the output of the circuit when b2 = Vref , and let
b1 = b0 = 0V. Then, we can redraw the circuit as shown in Figure 10.2.

Let us determine the output of the circuit in the second form. The resis-
tance of the two resistors in parallel is

Resistance =
1

1
2R + 1

4R

=
4R

3
.

As this resistor is in series with the R ohm resistor, the output of the circuit
is

Vout =
4R
3

R + 4R
3

Vref =
4
7
Vref .

Similar logic shows that if b0 = b2 = 0, b1 = Vref , then Vout = (2/7)Vref ,
and if b1 = b2 = 0, b0 = Vref , then Vout = (1/7)Vref .

The principle of superposition states that, given a linear circuit, if a set
of inputs I1 leads to the output O1, and if a second set of inputs I2 leads to
the output O2, then if one uses a1I1 + a2I2 as the input to the system, then
the output of the system will be a1O1 + a2O2. The principle of superposition
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Fig. 10.1. A very simple DAC

Fig. 10.2. The circuit redrawn
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makes it relatively simple to determine the output of the system with any set
of inputs. To determine the output for a generic input, one need only take the
combination of the inputs whose sum gives the desired input. For example,
to find the output when b0 = b1 = b2 = Vref , sum the outputs of all three of
the previously calculated cases. This gives Vref . Thus, when all three bits are
“high,” the output is Vref .

It is easy to show that the output of the circuit is

Vout =
b0 + 2b1 + 4b2

7
.

Thus, the output of the circuit is proportional to the binary value of the
number (b2b1b0)base 2 (where the digit bi is thought of as a one if bi = Vref

and is thought of as a zero if bi = 0V). One can extend this circuit to an
N -bit DAC by continuing the pattern of inputs and resistors. See Figure 10.3.

Fig. 10.3. A very simple N -bit DAC

10.2 Practical Difficulties

The first problem with this DAC is that if one loads its output—if one draws
current from its output—one will “unbalance” the circuit. The loading causes
the circuit’s output voltage to change, and the circuit will no longer accurately
convert our digital signal to a proportional analog signal. To prevent the next
stage from loading the DAC, it is a good idea to add a unity-gain buffer to
the output of the DAC. The improved circuit is shown in Figure 10.4.
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Fig. 10.4. The three-bit DAC with an output buffer

The digital outputs of a microcontroller are not meant to be used to source
much current. The ADuC841’s datasheets, for example, claim that the max-
imum output current is about 80μA. That is a problem as that would make
the maximum voltage drop across a 10 K resistor no more than 800 mV. (In
a single trial, the DAC worked fairly well. Clearly, 80μA is not always the
actual limit.)

A possible solution to the problem is to use larger resistors—perhaps 100 K,
200 K, and 400 K resistors. A practical problem with such a circuit is that as
there is a certain capacitance associated with the pins of the I/O ports, large
resistors may increase the rise time to an unacceptable level.

Another practical problem is that the outputs of the digital I/O pins are
not generally 0 V and Vref . The zero may be close to 1 V, and the pin’s high
output will generally be similarly distant from its nominal value. DACs of this
type will probably not be very accurate unless steps are taken to regulate the
voltage of the digital inputs.

10.3 The Experiment

Write a very short program to make the output of the pins P3.0, P3.1, and
P3.2 of the ADuC841 repeat the sequence 000, 001, 010, 011, 100, 101, 110,
111 indefinitely. Build the circuit of Figure 10.1, and let P3.0 be b0, P3.1 be b1,
and P3.2 be b2. Let R = 5K. Analyze the output of the circuit while running
the program you wrote.

Next, implement the circuit of Figure 10.1 but with the 5K resistor re-
placed by a 100 K resistor, the 10 K resistor replaced by a 200 K resistor and
the 20 K resistor replaced by a 400 K resistor. Examine the output, describe



10.4 Exercises 79

how it differs from the output of the previous circuit, and explain why the
differences you have observed exist. Please pay particular attention to the
voltage levels and the apparent rise time of the output.

10.4 Exercises

1. What simple additions could one make to the circuit of Figure 10.1 to
rid oneself of the problem of the circuit loading the ADuC841’s digital
outputs? (Please keep your answer very simple.)
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The Binary Weighted DAC

Summary. In the previous chapter, we considered a simple, entirely passive DAC.
In this chapter, we consider the binary weighted DAC. This DAC is also very simple
but makes use of an op-amp in a way that is fundamental to the DAC’s performance.

Keywords. binary weighted DAC, op-amp.

11.1 The General Theory

The circuit of Figure 11.1 shows an N -bit binary weighted DAC. The DAC’s
name comes from the way the resistors have been chosen; each resistor is twice
as large as the preceding resistor. This is a very simple DAC that makes use
of an op-amp in a way that is fundamental to the DAC’s operation.

In Figure 11.1, the non-inverting input, V+, is tied to ground. According
to the golden rules, the voltage at the inverting input must be approximately
0 V as well. That is why there is a dashed ground symbol at the inverting input.

The current in the branch to which bi is an input will be bi/(2(N−1)−iR).
Because (according to the golden rules) no current enters the op-amp, the
total current passing through the R ohm resistor sitting “above” the op-amp
is

total current =
N−1∑

i=0

bi

2(N−1)−iR
=

1
2N−1R

N−1∑

i=0

2ibi.

The voltage at the output is the voltage that drops across the R ohm resistor
is positioned above the op-amp. As this voltage drops from zero—from the
virtual ground—we find that the voltage at the output is

Vout = − 1
2N−1

N−1∑

i=0

2ibi.

Clearly, this voltage is proportional to the binary value of the word bN−1 · · · b0.
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Fig. 11.1. An N -bit binary weighted DAC. The dashed portion is not physically
present; the ground at the inverting input is a virtual ground.

This DAC is conceptually very simple, but it suffers from a serious short-
coming. The resistors must have resistances of 2kR ohm. If this proportionality
is not maintained, then the output of the DAC will not be proportional to its
input. Suppose, for example, that one has an eight-bit DAC all of whose resis-
tors are in the exact proportions desired except that the value of the resistor
connected to the input b7 is 1% too small. When one translates the number
01111111 into a voltage, one finds that the associated output voltage is

Vout = −127
128

Vref = −0.9921875Vref

where Vref is the voltage input to bi when it is associated with a logical one.
When one translates the number 10000000 into a voltage, one finds that,
because of the 1% error in the value of the resistor, the output voltage is

Vout = −128
128

Vref0.99 = −0.99Vref .

We find that even though 10000000 should correspond to a larger voltage than
the voltage which corresponds to 01111111, it does not. A 1% error in one of
the resistor values led to our “losing” one bit of accuracy.
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Because of the need for accuracy in the various resistor values called for
by the binary weighted DAC, such DACs generally have eight or fewer bits of
accuracy.

11.2 Exercises

1. What accuracy is required of the resistor connected to b15 in a 16-bit
binary weighted DAC if the 16th bit, b0, is to be meaningful?
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The R-2R Ladder DAC

Summary. The R-2R ladder DAC is another passive DAC. The R-2R ladder DAC
makes use of only two resistor values—but it requires 2N resistors to implement an
N -bit converter.

Keywords. R-2R ladder, passive DAC, buffer, superposition.

12.1 Introduction

A three-bit example of an R-2R ladder DAC is given in Figure 12.1. As we
will show, the output of the DAC is

Vout =
4b2 + 2b1 + b0

8
. (12.1)

One can extend the circuit to any number of bits by continuing the pattern
of R and 2R ohm resistors.

12.2 The Derivation

We consider the effect of any one bit being high, or, in other words, of a
given digital input being equal to Vref , while the rest are low—are held at 0 V.
Then, we make use of the principle of superposition to arrive at (12.1). First
consider the output value for the input word 1002. In terms of voltages, we
have b0 = b1 = 0 and b2 = Vref . Our circuit is then equivalent to the circuit
of Figure 12.2. It is clear that the leftmost two resistors are equivalent to one
R ohm resistor. This is in series with the next R ohm resistor. Combined, the
leftmost three resistors are a 2R ohm resistor in parallel with the next 2R ohm
resistor. Thus, one finds that the leftmost four resistors are equivalent to a
single R ohm resistor. Combining this with the next R ohm resistor, we find
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Fig. 12.1. A three-bit R-2R ladder DAC

Fig. 12.2. An equivalent circuit when b0 = b1 = 0 and b2 = Vref

that to the rest of the circuit the leftmost five resistors act as a single 2R ohm
resistor. One finds that the circuit’s output, Vout, is b2/2.

What happens when b1 = Vref and b0 = b2 = 0? As we have seen, in this
case the leftmost three resistors are equivalent to a single 2R ohm resistor.
The equivalent circuit here is given by Figure 12.3. Considering the circuit in
the dashed box as a two port and applying Thévenin’s theorem [18], we find
that the circuit can be replaced by a b1/2 volt voltage source and an R ohm
resistor in series; the equivalent circuit is given in Figure 12.4. It is now clear
that

Vout = b1/4.

It is left as an exercise (see Exercise 1) to show that, when b0 = Vref and
b1 = b2 = 0, Vout = b0/8. The principle of superposition allows us to conclude
that, in general,
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Fig. 12.3. An equivalent circuit when b0 = b2 = 0 and b1 = Vref

Fig. 12.4. The equivalent circuit after making use of Thévinin’s theorem

Vout =
4b2 + 2b1 + b0

8
.

The output of the DAC is proportional to the value of the binary number
b2b1b0.

12.3 Exercises

1. Show that when b0 = Vref and b1 = b2 = 0, the output of the R-2R DAC
is b0/8.

2. Explain what should be added to the output of the circuit of Figure 12.1
in order to prevent the circuit’s output from being loaded by the next
stage.



88 12 The R-2R Ladder DAC

3. Prove that the output of the circuit of Figure 12.5 is related to its inputs
by the formula

Vout =
2b1 + b0

4
.

Fig. 12.5. A two-bit DAC
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The Successive Approximation Analog to
Digital Converter

Summary. Having seen several types of DACs, we move on to analog to digital
converters. In this chapter, we describe and analyze an analog to digital converter
that contains a DAC and control logic; we consider the successive approximation
analog to digital converter.

Keywords. analog to digital converter, successive approximation ADC, sample-

and-hold.

13.1 General Theory

There are many systems that convert analog input signals into digital output
signals. These systems are known as analog to digital converters (A/Ds, ADCs,
or, colloquially, “A to Ds”). The successive approximation A/D is built around
a control unit, a DAC, and a comparator. See Figure 13.1.

The principles of operation of the successive approximation ADC are quite
simple. The output of the DAC is constantly compared to the voltage input to
the ADC. The control logic searches for the voltage that is nearest to the input
voltage. This search can be carried out in many different ways. The simplest
search method is to start with a digital input of zero and to increase the
digital input by one unit until the comparator changes state. At that point,
the controller knows that the output of the DAC has just passed the correct
voltage. It stops adding one to the binary value of the input to the DAC and
outputs the appropriate digital value—the value currently being input to the
DAC.

This method of searching for the correct voltage is clearly inefficient. In
the worst case scenario, it will take 2N steps to reach the correct voltage. A
better way to search is to use a binary search. The controller starts with the
input to the DAC being 100 · · · 0—which corresponds to half the maximum
output of the DAC. The controller examines the output of the comparator to
see whether the output of the DAC is greater than, or less than, the input. If
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Fig. 13.1. A schematic representation of a successive approximation ADC

it is greater than the input, then the controller fixes the first bit of the output
of the converter at zero and reduces the output of the DAC to one quarter
its maximum output. If the output of the DAC is less than the input to the
ADC, then the controller fixes the first bit of the output of the converter at
one and increases the output of the DAC to three quarters of its maximum. In
the next cycle, the controller works on determining the next lower bit of the
output of the ADC. This process continues until the controller has determined
the value of each of the bits of the output. In this way, one gains one bit of
accuracy each cycle, and the search requires N cycles.

13.2 An Example

Consider a successive approximation ADC that has an internal three-bit bi-
nary weighted DAC with Vref = 2.5V. Let the DAC’s output voltage increase
in steps of (2.5/8) V to a maximum of (7/8) 2.5 V, and let the input to the
ADC be 1.7 V. Initially, the control logic of the ADC outputs the binary word
100 to the DAC. The DAC outputs (4/8)2.5 = 1.25V. As this voltage is lower
than the voltage being input, the control logic fixes the first bit of the output
at 1 and increases the voltage used in the comparison stage by changing the
input to the DAC to 110. This causes the output of the DAC to change to
(6/8)2.5 = 1.875V. As this value is too large, the control logic fixes the second
bit of the output at zero and halves the amount previously added to 1.25V by
changing the value output to the DAC to 101. This causes the voltage being
compared to the input to change to (5/8)2.5 = 1.5625V. As this value is less
than the value of the input voltage, the control logic determines that the final
output of the ADC is 101.
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13.3 The Sample-and-hold Subsystem

As described above, a successive approximation A/D compares the input volt-
age to a reference voltage over a relatively long period of time. It is generally
important that the input to the A/D be forced to remain constant during the
interval in which the comparisons are being carried out. A schematic diagram
of a subsystem that samples and holds an input value is given in Figure 13.2.
Such subsystems are know as sample-and-hold circuits. When switch S1 is
open, the value on the capacitor should remain constant. When the switch is
closed, the voltage on the capacitor becomes equal to the voltage currently at
the input. By closing the switch briefly, one samples the input voltage, and
by opening the switch one holds the previously sampled voltage. (This cir-
cuit is a semi-practical implementation of the system whose properties were
discussed in Section 1.1.) When used with an A/D, the A/D must be forced
not to process the input until the output of the sample-and hold circuit has
converged to the value of its input.

Fig. 13.2. A simple sample-and-hold circuit
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The Single- and Dual-slope Analog to Digital
Converters

Summary. We now consider the single-slope and the dual-slope ADCs. Both ADCs
make use of simple op-amp circuits and control logic to do most of their work. We
explain why the slightly more complicated dual-slope ADC is generally a better
choice of ADC than the single-slope converter.

Keywords. single-slope converter, dual-slope converter, sensitivity to parameter

values.

14.1 The Single-slope Converter

Consider the circuit of Figure 14.1. As the op-amp’s non-inverting input, V+, is
tied to ground, by making use of the golden rules we find that there is a virtual
ground at the inverting input. As long as the circuit’s input is connected to
Vref , the current in the resistor is Vref/R. This being the case the charge on
the capacitor is increasing linearly. Assuming that the charge on the capacitor
is initially zero, the voltage on the capacitor is

Vcap = −Vref

RC
t. (14.1)

(The minus sign is here because the voltage drops across the capacitor, and
the side of the capacitor through which the current “enters” is tied to the
virtual ground.)

We find that the capacitor’s voltage decreases linearly with time. To make
this system the core of a converter, we need two more parts—a microprocessor
and a comparator. The converter works as follows. At time zero, the micro-
processor causes the voltage at the input to the op-amp circuit to go from 0V
to Vref . The microprocessor keeps track of how much time has passed since the
input went high. Every Ts seconds, the microprocessor checks the output of
the comparator. When the comparator’s output changes, the microprocessor
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Fig. 14.1. The single-slope A/D. The block whose label is Vref/0 V connects either
Vref or 0 V to the resistor. The choice is controlled by the microprocessor.

“knows” that the output of the op-amp has exceeded the input—but barely.
It then stores the number of sample periods, n, that it took the output of the
op-amp circuit to exceed the value of the signal to be measured. The voltage
at the output of the op-amp circuit—which approximates the voltage of the
signal being measured—will be the voltage on the capacitor after n periods
(of duration Ts) have gone by. From (14.1), it is clear that this voltage is

Vsignal being measured ≈ −VrefTs

RC
n.

Thus, n is proportional to the voltage being measured, and n is the digital
output of the A/D.

14.2 Problems with the Single-slope A/D

As presented, the single-slope A/D can only measure voltages whose sign
differs from that of the reference voltage. This problem can be dealt with, if
necessary.

A second problem has to do with the sensitivity of our estimate to changes
in the values of R and C. A microprocessor’s time-base is generally quite
accurate, so Ts is generally known quite accurately. The values of resistors
and capacitors are more problematic. It would be very nice to develop an
A/D whose accuracy was not tied to the accuracy with which the values of R
and C are known. The next type of A/D takes care of this problem.
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14.3 The Dual-slope A/D

Consider the circuit of Figure 14.2. The circuit is very similar to the single-
slope A/D. There are two major differences

• the input to the op-amp circuit can be either Vref or the signal to be
measured, and

• the comparator checks when the output of the op-amp circuit returns to
zero.

In this circuit, the microprocessor initially sets the input to the op-amp
circuit to the voltage to be measured for n clock cycles. It then switches the
input to the op-amp circuit to Vref—which must be opposite in polarity to
the voltage to be measured. It maintains this voltage until the cycle in which
the comparator determines that the sign of the output of the op-amp circuit
has changed. Suppose that this take m cycles from the point at which the
microprocessor switches the voltage source. Following the logic used in the
case of the single-slope converter, we find that

Vin

RC
Tsn +

Vref

RC
Tsm ≈ 0.

Solving for Vin, we find that

Vin ≈ −Vref

n
m.

We find that Vin is proportional to m. Thus, m is the digital version of the
voltage Vin. The beauty of this system is that the constant of proportionality
is no longer a function of R or C. We can now use less expensive resistors and
capacitors in our design, and we no longer need to worry (much) about the
effects of aging or temperature on the values of R or C.

14.4 A Simple Example

Let Ts = 100μ s, n = 10, and let Vref = −2.5V. Suppose that R = 100K
and C = 10nF, and let Vin = 1.1V. Assuming that at time t = 0—when
the measurement begins—the capacitor is fully discharged, during the first
millisecond the voltage at the output of the op-amp will be

VC =
−Vin

RC
t = −1,100t.

From this point on, the output will be

VC =
−Vref

RC
(t − 0.001) − 1.1 = 2,500(t − 0.001) − 1.1.



96 14 The Single- and Dual-slope Analog to Digital Converters

Fig. 14.2. The dual-slope A/D

(See Figure 14.3 to see the output of the “op-amp” of a Simulink model of this
A/D.) It is easy to see that VC goes from negative to positive when t = 1.44 ms.
Thus, the final value of m will be 5. This corresponds to an estimate of

Vin ≈ 2.5
10

5 = 1.25V.

14.5 Exercises

1. Repeat the calculations of Section 14.4, but let n = 20. What is the
estimated value of Vin at the end of the conversion?
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Fig. 14.3. The op-amp’s output as a function of time
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The Pipelined A/D

Summary. We now consider the pipelined A/D. This A/D is constructed by
“stringing together” several identical subunits. The pipelined A/D generally has
a high throughput—it processes a lot of analog data quickly. The pipelined A/D
suffers from processing delay, however.

Keywords. pipelined A/D, latency, accuracy, processing delay.

15.1 Introduction

If one would like an A/D that is capable of reasonably high accuracy, is
reasonably fast, and is not too expensive, a pipelined A/D may be a good
choice. A pipelined A/D is composed of many identical units like the unit
shown in Figure 15.1.

The first stage in the unit is a sample-and-hold circuit. The next stage
is an analog to digital converter. The output bit(s) of this converter become
some of the bits in the final output of the converter. Next, a D/A reconverts
the digital word to an analog voltage. (The levels of the A/D and the D/A are
designed to be identical.) The next stage is to calculate the difference of the
output of the D/A and the input voltage. The difference of the voltages is the
“unconverted” part of the input voltage. The last stage rescales the output of
the differencer so that its range is, once again, the full range of the A/D. This
voltage contains the “unconverted” part of the signal, and by processing the
rescaled “remainder” it is possible to make the conversion more accurate.

The idea that underlies the pipelined converter is that by cascading several
blocks like that of Figure 15.1, one can make an arbitrarily precise A/D. Each
block takes its input, converts several bits, and outputs a voltage that is
proportional to the portion of its input that the block did not convert. The
next block “sees” the output of the previous block—which is proportional to
the unconverted part of the input—and extracts a few more bits from it. This
process continues down the pipeline.



100 15 The Pipelined A/D

Fig. 15.1. A single unit of a pipelined A/D

15.2 The Fully Pipelined A/D

A fully pipelined A/D is a pipelined A/D in which each unit contributes a
single bit to the output of the A/D. Consider the A/D of Figure 15.2. This
figure shows a three-bit fully pipelined A/D. Let us consider a simple example
of how the fully pipelined A/D operates.

Suppose that

• Vref = 2.5V,
• for voltages below 1.25 V, the A/D outputs a zero, and for voltages above

this threshold, it outputs a one, and
• the DAC outputs 0 V when its input is a zero and 1.25 V when its input

is a one.

Let the voltage input to the converter be 1.1 V, and assume that when we
start, each of the sample-and-hold circuits holds 0 V. We find that at time
zero all of the digital outputs are 0. After the first sample is taken, say at
time 0+, the first sample-and-hold holds 1.1 V and all of the bits remain 0.
The output of the first amplifier is now 2 · 1.1 = 2.2V. After the second clock
cycle, the output of the second A/D is 1—as its input is greater than Vref/2—
and the output of the second amplifier is 2(2.2−1.25) = 1.9V. After the third
clock cycle the output of the third A/D is 1 as well. The three bits given, 011,
are the digital output of the converter. To convert from the digital output
back to the (approximate) analog voltage at the input, one calculates

Vin ≈ 4b2 + 2b1 + b0

8
Vref .

In making the conversion, the value of b2 from the first cycle, the value of
b1 from the second cycle, and the value of b0 from the third cycle are used.
Until three cycles have passed, this circuit will not have completed a single
conversion. Once three cycles have passed, however, this circuit outputs an-
other conversion each cycle. Each finished conversion gives the digital value
that corresponds to the input three cycles previously. If this delay—this la-
tency—is acceptable, then the pipelined A/D is often a reasonable A/D to
choose.
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Fig. 15.2. A fully pipelined A/D
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15.3 The Experiment

Using Simulink r©, build a three-stage pipelined A/D converter. You may need
to use two sample-and-hold blocks (one that samples on the rising edge and
one on the falling edge) for each sample-and-hold circuit.

Connect the digital outputs of the A/D to a new block—a D/A—that will
convert the digital signals back into analog signals. (Note that there will be
synchronization issues to deal with here as well.)

15.4 Exercises

1. Let the values of the input to the circuit of Figure 15.2 be {1.0, 1.5, 2.3, 2.4}
at the first four cycles of the A/D’s operation. Let Vref = 2.5V, and assume
that all the sample-and-holds initially hold 0 V. Find the values of b2, b1,
and b0 and the values of the outputs of the amplifiers for the first four
periods of the A/D’s operation. Explain how to take the calculated values
and produce the digital outputs that correspond to the first and second
analog inputs.
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Resistor-chain Converters

Summary. Given a chain of identical resistors, it is conceptually simple to build
either an A/D or a D/A. In this chapter, we describe the principles of operation of
the resistor-chain DAC and the flash A/D.

Keywords. resistor-chain DAC, flash A/D, Karnaugh map, thermometer code.

16.1 Properties of the Resistor Chain

One way of deriving a set of voltages that are multiples of one another is
to take a “chain” of identical resistors, to connect one side of the chain to a
reference voltage, Vref , and to ground the other side of the chain. See Figure
16.1. It is clear that the voltage between resistor i and i + 1, Vi, is

Vi =
i

N
Vref , i = 0, . . . , N − 1

where V0 is the voltage between R1 and ground.

16.2 The Resistor-chain DAC

In principle, it is simple to take a resistor chain and convert it into either a
D/A or an A/D. Let us consider the D/A first. Suppose that the digital input
to the converter is the n-bit binary word bn−1 · · · b0. If one takes the resistor
chain and uses an analog multiplexer to connect V2n−1bn−1+···+2b1+b0 to the
output, one has a conceptually simple D/A. In order to stop the load of the
D/A from drawing current from the resistors and destroying the “balance”
that creates the voltage divider, the output of the multiplexer should be fed
into a buffer. A schematic drawing of such a resistor-chain D/A is given in
Figure 16.2.
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Fig. 16.1. A resistor chain. One end of the chain is connected to the reference
voltage; the other end is grounded.

The resistor-chain DAC has one clear advantage: as the digital input in-
creases, so does the analog output. No matter how poorly matched the suppos-
edly identical resistors in the resistor chain are, as the digital input increases
and the pointer—the analog multiplexer—moves to a resistor higher up in the
resistor chain, the output voltage increases.

Building a 12-bit resistor-chain DAC is not something one would want to
do by hand. It is not too hard to do when using standard chip manufacturing
processes; DAC0 and DAC1 on the ADuC841 are such resistor-chain DACs.

16.3 The Flash A/D

Building an A/D using a resistor chain is also relatively straightforward. For
an N -bit converter, one takes a resistor chain with 2N resistors, one compares
the voltage between each pair of resistors and the input voltage using a com-
parator, and one then feeds all 2N −1 outputs to a decoder circuit. See Figure
16.3. Such an A/D is called a flash A/D. Because of the relative simplicity
of this design, flash converters are generally very fast—as their name implies.
Because of the way that the complexity (and hence price) of the circuit grows
as the number of bits to be converted grows, flash A/Ds generally are not used
when one needs more than eight bits in the final digital output.

For any given voltage, starting with the comparator nearest ground we find
that the output of each comparator is one until we reach the first comparator
for which the voltage on the resistor chain is higher than the input voltage.
From that point onward, the output of the comparators is always zero. (This
sort of code, where the data is contained in the point at which an output
switches from one value to another, is called a thermometer code.) When
designing the decoding circuitry, it is clear that there will be many “don’t
cares” in the truth table. This allows us to design relatively simple decoders.
(See Exercise 2.)
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Fig. 16.2. A resistor-chain D/A. The unity-gain buffer at the output stops the
voltage divider from being loaded by the DAC’s load.

16.4 Exercises

1. Suppose that the resistors in the resistor chain of Figure 16.1 are not all
precisely equal but rather that Ri = R+ΔRi where the ΔRi, i = 1, . . . , 2N

are zero-mean random variables for which σ2
ΔRi

= ε2R2 (and where we let
ΔR0 ≡ 0).
a) Show that

Vi/Vref =
i/2N + 1

R2N

∑i
k=0 ΔRk

1 + 1
R2N

∑2N

k=0 ΔRk

.

b) Assuming that 1
R2N

∑2N

k=0 ΔRk << 1, show that
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Fig. 16.3. An N -bit flash A/D

Vi/Vref ≈
(

i/2N +
1

R2N

i∑

k=0

ΔRk

)⎛

⎝1 − 1
R2N

2N∑

k=0

ΔRk

⎞

⎠

≈ i

2N
+

1
R2N

i∑

k=0

(
1 − i

2N

)
ΔRk − i

R22N

2N∑

k=i+1

ΔRk.

c) Now, calculate the root mean square (RMS) value of

1
R2N

i∑

k=0

(
1 − i

2N

)
ΔRk − i

R22N

2N∑

k=i+1

ΔRk.

You may assume that the random variables are independent.
2. A schematic diagram of a two-bit flash A/D is given in Figure 16.4. The

truth table for b0 and b1 is given in Table 16.1. Please make use of Kar-
naugh maps to find the minimal realization of the two functions given in
the table.
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Fig. 16.4. A two-bit flash A/D

Table 16.1. The truth table for b1 and b0 as functions of a0, a1, and a2. The letter
X denotes a “don’t care.”

a2 a1 a0 b1 b0

0 0 0 0 0

0 0 1 0 1

0 1 0 X X

0 1 1 1 0

1 0 0 X X

1 0 1 X X

1 1 0 X X

1 1 1 1 1
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Sigma–Delta Converters

Summary. By making use of feedback in an interesting way, it is possible to design
very accurate ADCs and DACs. In this chapter, we consider the sigma–delta A/D
and the sigma–delta D/A. We find that though they can be very accurate, when
they are most accurate they are also very slow.

Keywords. sigma–delta DAC, sigma–delta A/D, feedback, noise shaping, oversam-

pling.

17.1 Introduction

We now consider sigma–delta (Σ–Δ) converters. Such converters make use of
sums (from whence the Σ), differences (from whence the Δ), feedback, and
low-pass filters in order to do their jobs. A generic sigma–delta converter is
shown in Figure 17.1. This system can be considered a simplified model of an
A/D or a D/A. Upon considering Vin(s), N(s), and Y (s), we find that

Y (s) = N(s) +
K

s
(Vin(s) − Y (s)).

Solving for the output of the feedback system, Y (s), we find that

Y (s) =
s

K + s
N(s) +

K

K + s
Vin(s). (17.1)

What is critical here is that for small values of s = jω—for low frequencies—
the noise term, N(s), is attenuated greatly while the input is passed along al-
most without change. (Sigma–delta modulators are said to “shape” the noise
spectrum and to have a noise-shaping property.) The low-pass filter through
which Y (s) passes should remove the noise component—which is largely lo-
cated at high frequencies—without affecting the input, which is assumed to
have a low-pass character.
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Fig. 17.1. A generic sigma–delta converter. N(s) is a noise term serving to model
the effect of the one-bit quantization used in sigma–delta converters.

17.2 The Sigma–Delta A/D

Consider the sigma–delta A/D of Figure 17.2. If we sample sufficiently quickly,
then the sum that appears in Figure 17.2 satisfies

N−1∑

k=0

e(k) =
1
Ts

N−1∑

k=0

e(k)Ts ≈ 1
Ts

∫ NTs

0

e(t) dt.

That is, the summer is (approximately) an integrator combined with a gain of
1/Ts. Additionally, the comparator that follows the summer can be thought
of as taking the output of the summer and “adding” quantization noise to it.
Because of the very high sampling rate, the unit delay, a delay of one sampling
period, can be considered an infinitesimal delay, and its effect on the system
can be ignored. Thus our system looks like the generic system of Figure 17.1
where K = 1/Ts, and N(s) is the quantization noise added by the comparator.

Fig. 17.2. A sigma–delta A/D. We assume that the input is already sampled, and
that the system is clocked at the sample period, Ts. Note that the signals e(k), S(k),
and a(k) are continuous-time waveforms whose values change at sampling instants—
at multiples of Ts. The summer samples its input once per sampling period.

Let us analyze the effect that the noise, N(s), has on Y (s) and Vout(s). In
order to proceed, we make two assumptions [1]:
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1. The quantization noise is uniformly distributed between −c and +c (where
−c and +c are output levels of the comparator of Figure 17.2).

2. The power spectral density of the quantization noise is constant from mi-
nus the Nyquist frequency, −1/(2Ts), up to the Nyquist frequency, 1/(2Ts).
It is zero outside of this interval.

The first assumption allows us to conclude that the mean (the expected value)
of the quantization noise is zero, and its variance is

σ2
noise = E((n(t) − E(n(t))2)

=
∫ ∞

−∞
(α − 0)2fn(t)(α) dα

=
∫ c

−c

(α − 0)2
1
2c

dα

=
1
c

∫ c

0

α2 dα

= c2/3.

As the variance of a random variable is equal to the integral of the random
variable’s power spectral density [7], we find that

∫ 1/(2Ts)

−1/(2Ts)

SNN (f) df = c2/3.

As SNN (f) is constant in the region over which we are integrating, we find
that:

SNN (f) =
{

Tsc
2/3, |f | < 1/(2Ts)

0, elsewhere .

Consider the noise at the output of the comparator. Making use of (17.1),
the linearity of the system, and the general theory of random signals and noise
(see [7]), we find that the power spectral density of the noise at the output of
the comparator is

PSD(f) =
(2πf)2

1/T 2
s + (2πf)2

Tsc
2/3

for |f | < 1/(2Ts), and it is zero elsewhere.
Now, consider the power spectral density at the output of the low-pass

filter. Assume that the filter is an ideal unity-gain filter that passes frequencies
up to F and removes all higher frequencies. We find that the power spectral
density of the noise at the output, SNN (f), is

SNN (f) =

{
(2πf)2

1/T 2
s +(2πf)2 Tsc

2/3, |f | < F

0, otherwise
.

Assuming that Ts and F are relatively small, the above function can be ap-
proximated by
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SNN (f) ≈
{

(2πf)2T 3
s c2/3, |f | < F

0, otherwise .

To find the total noise power in the output, we need only integrate this func-
tion over the entire real axis. We find that the total noise power is

total noise power ≈ 2(2π)2(F 3/3)T 3
s c2/3 = (8π2c2/9)(F/Fs)3

where Fs is the sampling frequency (the reciprocal of the sampling period,
Ts). As the noise power is the expected value of the square of the noise, the
RMS value of the noise is

vRMS =
√

total noise power ≈
√

8/9πc(F/Fs)3/2.

How many bits of useful data will we have after we convert the output
bitstream, a(k), to a lower-rate stream of words? The maximum value at the
output of the comparator is c. In order to obtain N bits of useful information
when the input to the system is at its maximum, we must know that the noise
value is less than c/2N . Otherwise, the Nth bit will (essentially) correspond
to the noise present—and not the signal. We find that

vRMS ≈
√

8/9πc(F/Fs)3/2 ≈ c/2N

in order to develop an N -bit A/D. Taking logarithms, we find that the number
of bits of accuracy we can expect from a sigma–delta A/D is

N ≈ −(3/2) log2(F/Fs) + constant.

That is, by doubling the sampling speed or halving the bandwidth of the con-
verter, one gains one and a half bits of accuracy.

17.3 Sigma–Delta A/Ds, Oversampling, and the Nyquist
Criterion

In order for a sigma–delta converter to work properly, it is necessary that it
sample very quickly—much faster than the Nyquist frequency for the signal at
its input. The sigma–delta converter is said to oversample its input. Inputing
a signal whose highest frequency is less than half the actual sampling rate
of the converter will not lead to aliasing. Of course, the low-pass filter at the
output of the converter will remove all signals whose frequency is greater than
F , so the portions of the signal that are located at frequencies greater than
F will be removed. They will not, however, lead to aliasing.

When using a sigma–delta A/D, it is often possible to employ a very simple
anti-aliasing filter. The filter must pass frequencies up to F and must remove
all frequencies about Fs/2. As Fs/2 >> F , such a filter is generally easy to
implement.



17.5 The Experiment 113

17.4 Sigma–Delta DACs

The principles of operation of the sigma–delta DAC are similar to those of the
sigma–delta A/D. Figure 17.3 shows a schematic diagram of a simple sigma–
delta DAC. Note how the analog elements of the sigma–delta A/D are digital
in the sigma–delta DAC. The interested reader is referred to [8] for a detailed
treatment of a simple sigma–delta DAC.

Fig. 17.3. A sigma–delta DAC

17.5 The Experiment

(This experiment requires some knowledge of discrete-time systems and may
most profitably be performed after the material in Chapter 18 has been stud-
ied.)

Please use Simulink r© to implement a sigma–delta ADC. Note that the
transfer function of a summer is

T (z) =
z

z − 1
,

and the transfer function of a unit delay is 1/z.
Please design the model to calculate the mean square error of the converter.

You may refer to the model of Figure 17.4 while building your system.

• After building the system, input signals whose frequencies are between 0
and F Hz. How well does the system track its inputs?

• What is the measured mean square error? Is the measurement in reason-
able agreement with the theory developed in this chapter?

• Now, input signals whose frequencies are between F and Fs/2 Hz. What
output do you see?

• Finally, input a signal whose frequency is slightly above Fs/2. What does
the output look like now? Why is this output reasonable?
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Fig. 17.4. A Simulink model of a sigma–delta A/D. The lower half of the system
shown is used to calculate the noise at the output of the upper low-pass filter. Note
that an analog low-pass filter is used in the converter. In principle, the filter should
be a digital filter with digital output, but the analog filter makes “seeing” what is
happening easier. The steady-state value seen on Scope1 is approximately the mean
square noise voltage.
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Discrete-time Systems and the Z-transform

Summary. In engineering, most subject areas make use of specific mathematical
tools. In the design and analysis of discrete-time systems, the most important of the
mathematical tools is the Z-transform. In this chapter, we develop the Z-transform
and its properties, and we show how to make use of the Z-transform to analyze
discrete-time linear time-invariant systems. In the following chapters, we treat the
problem of digital filter design.

Keywords. Z-transform, LTI system, region of convergence, sinusoidal steady state,

stability.

18.1 The Definition of the Z-transform

Given a doubly infinite sequence of values {. . . , a−1, a0, a1, . . .}, we define the
two-sided (or bilateral) Z-transform of the sequence, A(z), by the equation

A(z) ≡
∞∑

k=−∞
akz−k. (18.1)

We generally use lowercase letters to represent sequences and uppercase letters
to represent Z-transforms. As we see shortly, the Z-transform has many nice
properties.

18.2 Properties of the Z-transform

18.2.1 The Region of Convergence (ROC)

The Z-transform of the sequence {ak} can be written

A(z) =
∞∑

k=−∞
akz−k =

−1∑

k=−∞
akz−k +

∞∑

k=0

akz−k.
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We consider the two halves of the sum that define A(z) separately. Considering
the sum ∞∑

k=0

akz−k,

we see that this sum should be well defined for z large enough. (When z is
large, z−k is small.) Suppose that the sum converges for some value z = b.
Then we know that there exists a C > 0 for which |akb−k| < C for all k.

Making use of this result and the triangle inequality, we find that for any
c for which |c| > |b|,

∣∣∣∣∣

∞∑

k=0

akc−k

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=0

akb−k(c/b)−k

∣∣∣∣∣

≤
∞∑

k=0

|akb−k||c/b|−k

≤ C

∞∑

k=0

|b/c|k

geometric series
= C

1
1 − |b/c| .

That is, if the sum converges at a point b, it converges for all c for which
|c| > |b|.

Let us consider the other half of the sum
−1∑

k=−∞
akz−k.

Supposing that the sum converges for some value b, it is easy to show that
the sum must converge for all d that satisfy |d| < |b|. (See Exercise 2.)

Taking these two results, we find that the Z-transform converges in a region
of the form

c1 < |z| < c2;

it does not converge for z such that |z| < c1 or for which |z| > c2. The Z-
transform’s behavior when |z| = c1 or |z| = c2 can be quite interesting. (See
Exercise 7 for a nice example of such interesting behavior.) The region in which
the Z-transform converges is known as the transform’s region of convergence
(or ROC).

Note that if ak = 0 for all k < 0, then the ROC of the Z-transform contains
a region of the form |z| > c1. Also, from what we have already seen, it is clear
that inside its ROC a Z-transform converges absolutely and uniformly. That
is sufficient to allow us to interchange summation and integration and to
interchange summation and differentiation in the interior of the ROC. (See
[3] for more information about power series, their regions of convergence, and
their properties.)
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18.2.2 Linearity

The Z-transform is linear. That is, if one is given two sequences,

{. . . , a−1, a0, a1, . . .}

and
{. . . , b−1, b0, b1, . . .},

whose Z-transforms are A(z) and B(z), respectively, then the Z-transform of
any linear combination of the sequences

α{. . . , a−1, a0, a1, . . .} + β{. . . , b−1, b0, b1, . . .} ≡
{. . . , αa−1 + βb−1, αa0 + βb0, αa1 + βb1, . . .}

is
αA(z) + βB(z).

The region of convergence of the transform is (at least) the intersection of the
ROCs of A(z) and B(z). For the proof, see Exercise 5.

18.2.3 Shifts

Suppose that one is given the sequence {. . . , a−1, a0, a1, . . .} whose Z-transform
is A(z), and one would like to calculate the Z-transform of the shifted sequence
{. . . , b−1, b0, b1, . . .} where bk = ak−n, n ∈ Z. One finds that

B(z) =
∞∑

k=−∞
bkz−k

=
∞∑

k=−∞
ak−nz−k

= z−n
∞∑

k=−∞
ak−nz−(k−n)

= z−nA(z).

The importance of this result cannot be overemphasized. The ROC associated
with B(z) will be the same as that associated with A(z) (except, perhaps, for
the points z = 0 and z = ∞).

18.2.4 Multiplication by k

Suppose that one is given the sequence {. . . , a−1, a0, a1, . . .} whose Z-transform
is A(z), and one would like to calculate the Z-transform associated with the
sequence {. . . ,−1 · a−1, 0 · a0, 1 · a1, . . . kak, . . .}. Noting that
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−z
d
dz

A(z) = −z
d
dz

∞∑

k=−∞
akz−k

= −z

∞∑

k=−∞
ak(−k)z−k−1

=
∞∑

k=−∞
akkz−k,

we find that the Z-transform of the new sequence is simply −zA′(z). The ROC
associated with this transform is the same as that associated with A(z) (with
the possible exception of the points on the boundary of the ROC).

18.3 Sample Transforms

18.3.1 The Transform of the Discrete-time Unit Step Function

Let us consider several simple examples. First, consider the discrete-time unit
step function:

uk ≡
{

0 k < 0
1 k ≥ 0 .

The Z-transform of this sequence is

U(z) =
∞∑

k=−∞
ukz−k =

∞∑

k=0

z−k.

This sum is a geometric series whose ratio is z−1. Thus, the sum is

A(z) =
1

1 − z−1
=

z

z − 1
, |z| > 1.

We find that for this sequence, the ROC of the Z-transform is |z| > 1.

18.3.2 A Very Similar Transform

Next, consider the sequence

ak =
{−1 k < 0

0 k ≥ 0 .

The Z-transform is

A(z) =
∞∑

k=−∞
akz−k = −

−1∑

k=−∞
z−k = −

∞∑

k=1

zk = −z

∞∑

k=0

zk.
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The last sum is a geometric series whose ratio is z. Thus, the sum is

A(z) = −z
1

1 − z
=

z

z − 1
, |z| < 1.

We find that for this sequence, the ROC is |z| < 1. The only difference between
the preceding two Z-transforms is the regions in which they converge.

18.3.3 The Z-transforms of Two Important Sequences

Let us consider two important one-sided sequences. First, we consider the
sequence

ak = akuk =
{

0 k < 0
αk k ≥ 0 .

The Z-transform of this sequence is

A(z) =
∞∑

k=0

αkz−k

=
∞∑

k=0

(α/z)k

=
1

1 − α/z

=
z

z − α
, |z| > |α|.

Next, consider the sequence defined by

ak = sin(ωk)uk =
{

0 k < 0
sin(ωk) k ≥ 0 .

Making use of the linearity of the Z-transform and the fact that

sin(ωk) =
ejωk − e−jωk

2j
,

we find that the Z-transform of the sequence is

A(z) =
1
2j

(
z

z − ejω
− z

z − e−jω

)

=
1
2j

z(ejω − e−jω)
z2 − z(ejω + e−jω) + 1

=
z sin(ω)

z2 − 2z cos(ω) + 1
, |z| > 1.
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18.3.4 A Two-sided Sequence

Consider the truly two-sided sequence

ak = α|k|, |α| < 1.

We find that

A(z) =
∞∑

k=−∞
akz−k

=
∞∑

k=−∞
α|k|z−k

=
∞∑

k=1

αkzk +
∞∑

k=0

αkz−k

= αz
1

1 − αz
+

1
1 − αz−1

=
αz

1 − αz
+

z

z − α

=
z(1 − α2)

(1 − αz)(z − α)
.

The ROC is easily seen to be |α| < |z| < 1/|α|.

18.4 Linear Time-invariant Systems

Linear systems are those systems that obey the principle of superposition. Let
{yk} be the output of a system when its input is some sequence {xk}, and
let {ỹk} be the system’s output when its input is {x̃k}. As we have seen (on
p. 75), a system is said to satisfy the principle of superposition if for all such
sequences the output of the sequence {axk + bx̃k} is {ayk + bỹk}.

A system is said to be time-invariant if when {yk} is the output that
corresponds to {xk}, then {yk+M} is the output that corresponds to {xk+M}.

Suppose that one has a system that is linear and time-invariant. Such sys-
tems, often referred to as LTI systems, can be characterized by their response
to the delta function:

δk ≡
{

1, k = 0
0, otherwise . (18.2)

Suppose that when the input to the system is {δk}, the output is the sequence
{hk}. The sequence {hk} is known as the system’s impulse response.

Suppose that the sequence {xk} is input to an LTI. This sequence can be
written

{xk} =
∞∑

n=−∞
xn{δk−n}
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where the elements of {xk} are viewed as the weights that multiply the se-
quences {δk−n}. Making use of linearity and time-invariance, we find that the
output sequence that corresponds to this input sequence is

{yk} =
∞∑

n=−∞
xn{hk−n}.

Clearly, the elements of {yk} are given by

yk =
∞∑

n=−∞
xnhk−n.

The summation defines the (non-cyclic) discrete convolution of the elements
of two sequences, {xk} and {hk}. In what follows, we use an asterisk to denote
the convolution operation.

18.5 The Impulse Response and the Transfer Function

Consider the Z-transform of the output of a linear system—of yk. That is,
consider the Z-transform of the discrete convolution of two sequences {xn}
and {yn}. We find that

Y (z) =
∞∑

k=−∞
z−kyk

=
∞∑

k=−∞
z−k

∞∑

n=−∞
xnhk−n

=
∞∑

n=−∞
xn

∞∑

k=−∞
z−khk−n

=
∞∑

n=−∞
z−nxn

∞∑

k=−∞
z−(k−n)hk−n

= X(z)H(z).

That is, the Z-transform of the output of an LTI system is the product of
the Z-transform of its input and the Z-transform of its impulse response. The
Z-transform of the impulse response, H(z), is said to be the system’s transfer
function. The transfer function, H(z), satisfies

Y (z)
X(z)

= H(z).

The ROC of {yk}’s Z-transform is at least the intersection of the ROCs of
X(z) and H(z). (This last statement has not been proved and is connected
to a proper justification of interchanging the order of the summations in the
derivation. The justification makes use of Fubini’s theorem for sums.)
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18.6 A Simple Example

Consider a summer—a system whose output at “time” k, yk, is the sum of its
inputs, xk, until time k. That is,

yk =
k∑

−∞
xn. (18.3)

One way to find this system’s transfer function is to find its impulse response
and then determine the Z-transform of the impulse response.

If one inputs an impulse—a sequence whose value is 1 when k = 0 and is
zero otherwise—to the system, the system’s output will be 0 until the impulse
arrives at k = 0, and from k = 0 onward the output will be 1. If xk = δk, then
yk = uk. The impulse response is the discrete-time unit step function. As the
Z-transform of the unit step is z/(z − 1), we find that the transfer function of
the summer is

H(z) =
z

z − 1
and its ROC is |z| > 1.

18.7 The Inverse Z-transform

18.7.1 Inversion by Contour Integration

Considering the form of the Z-transform, recalling that [3]
∮

|z|=R

zn dz =
{

0 n �= −1
2πj n = −1 ,

and making use of the uniform convergence of the Z-transform in its ROC, it
is easy to see that

yk =
1

2πj

∮

|z|=R

zk−1Y (z) dz

for any circle, |z| = R, contained in the interior of the ROC of Y (z).
Though one rarely uses this formula to find the inverse Z-transform, let us

consider two interesting examples of its use. First, consider

Y (z) =
z

z − 1
, |z| > 1.

We find that
yk =

1
2πj

∮

|z|=R

zk−1 z

z − 1
dz

where R > 1. As the curve over which we are integrating includes both z = 0
and z = 1, we must consider the poles at z = 1 and z = 0. We note that for
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k ≥ 0 there is no pole at z = 0; the only pole is at z = 1. The residue at this
point is 1 and the value of the integral is also one. Thus, yk = 1, k ≥ 0. For
k < 0, there is still a residue of 1 at z = 1. In addition, however, there is a
residue of −1 at z = 0. (See Exercise 3 for a proof of this claim.) As the sum of
the residues is zero, the value of the integral is zero. That is, yk = 0, k < 0.
This agrees with the results of Section 18.3.1.

Now, consider the Z-transform

Y (z) =
z

z − 1
, |z| < 1.

This time, we are calculating the integral

yk =
1

2πj

∮

|z|=R

zk−1 z

z − 1
dz

where R < 1. In this case, when k ≥ 0 the integrand is analytic inside the
curve, and its integral is zero. For k < 0, there is only one residue in the
region—the residue at z = 0. As the value of this residue is −1, we find that
the value of the integral is −1. Thus, for n < 0, yk = −1. This agrees with
the results of Section 18.3.2.

The existence of the contour integral-based formula guarantees that given
a Z-transform and its region of convergence, it is possible to invert the Z-
transform. In particular, if two Z-transforms are the same and one’s ROC
includes the other’s, then the two transforms must be the transform of the
same sequence. (This is so because the integral that is used in the inverse
transform will give the same sequence for any circle in the part of the ROC
that is common to both Z-transforms.) In particular, if two transforms whose
functional parts are the same have ROCs that extend to infinity, then the two
transforms are actually transforms of the same sequence, and all terms in the
sequence that correspond to negative values of the index are zero.

18.7.2 Inversion by Partial Fractions Expansion

The method that is generally used to invert the Z-transform is to decompose
a complicated Z-transform into a sum of less complicated transforms. The
less complicated transforms are then inverted by inspection—by making use
of our knowledge of simple Z-transforms. We assume that the Z-transform is
a rational function of z—that it is a quotient of polynomials in z. Then, we
make use of the partial fractions expansion [17] to subdivide the Z-transform
into simpler component parts. Finally, we invert the component parts.

Suppose, for example, that

Y (z) =
z

(z − 1)(z − 1/2)
, |z| > 1.

We can write
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Y (z)
z

=
1

(z − 1)(z − 1/2)
=

A

z − 1
+

B

z − 1/2
.

(We divide Y (z) by z in order to ensure that when we finish separating the
rational function into partial fractions, we will be left with a representation
for Y (z) in which every fraction has a z in its numerator. These simpler
functions will have transforms of the same form as the transforms we examined
previously.) Multiplying the fractions by (z − 1)(z − 1/2), we find that

1 = A(z − 1/2) + B(z − 1).

We find that A + B = 0 and A/2 + B = −1. Thus, A = 2 and B = −2. We
find that

Y (z) =
2z

z − 1
− 2z

z − 1/2
, |z| > 1.

As the region of convergence extends to infinity, we know that for all k < 0,
yk = 0. Also, we know that the inverse of the first part is twice the unit step.
Finally, the inverse of the second part is easily seen to be −2(1/2)kuk. Making
use of the results of Section 18.3.3, we find that

yk = 2(1 − (1/2)k)uk.

18.7.3 Using MATLAB to Help

The MATLAB r© command residue can be used to calculate the partial frac-
tions expansion. The format of the command is [R P K] = residue(B,A)
where the arrays B and A contain the coefficients of the numerator and the
denominator, respectively, and the arrays R, P, and K are the coefficients of
the fractions, the poles in each of the fractions, and the coefficients of the
polynomial that results from the long division of the original function. K is
often the empty array, [].

Let us use MATLAB to calculate the partial fractions expansion of the
previous section. With

Y (z)
z

=
1

(z − 1)(z − 1/2)
=

1
z2 − 1.5s + 0.5

,

we find that B = [1] and A = [1 -1.5 0.5]. Giving MATLAB the commands
B = [1], A = [1, -1.5, 0.5], and residue(B,A), we find that MATLAB
responds with

R =

2
-2



18.8 Stability of Discrete-time Systems 127

P =

1.0000
0.5000

K =

[]

Translating these values back into functions, we find that

Y (z)
z

=
2

z − 1.0000
− 2

z − 0.5000
.

This is what we found previously.

18.8 Stability of Discrete-time Systems

A causal system is a system whose impulse response, hk, is zero for all k < 0.
That is, the impulse response of a causal system does not start until the
impulse actually arrives. The ROC corresponding to the transfer function of
a causal system extends out to infinity; it includes a region of the form |z| > R.
All actual systems have to be causal; there is no way that a response to an
event can start before the event occurs.

A system is said to be bounded input-bounded output (BIBO) stable if
for any bounded input sequence, the output sequence is bounded as well. We
would like to determine when a causal system is stable.

The output of a causal LTI system whose impulse response is {hk} is

yk =
∞∑

n=0

hnxk−n.

The way to maximize this value for a bounded sequence—a sequence for which
|xk| ≤ C—is to choose the xk such that xk−nhn is non-negative and such that
the magnitude of xk−n is as large as possible—in this case, C. For such a
bounded input, we find that the output, yn, is uniformly bounded by

∞∑

n=0

C|hn| (18.4)

where each of the xk is assumed to have magnitude C. If this sum is bounded,
then the system is BIBO stable. If not, then it is possible to produce a bounded
sequence of inputs [15, Problem 3.21] for which the output is arbitrarily large;
thus, the system is not BIBO stable.
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Let us assume that the transfer function of our causal LTI system, H(z),
is a rational function of polynomials. As the system is causal, the Z-transform
of its impulse response is zero for all negative “time,” and the ROC that
corresponds to it is of the form |z| > c. (See Section 18.2.1.) In such a case,
the poles of the function determine what kind of sequence {hk} is.

Consider the partial fractions decomposition of H(z). Assuming that all
poles of H(z) are simple poles—are poles of order one—we find that

H(z) = A1
z

z − α1
+ · · · + AN

z

z − αN
.

Because the system is assumed causal, we know that the ROC includes a
region of the form |z| > C. Thus, the inverse Z-transform of the transfer
function is of the form

hk = (A1(α1)k + · · · + (αN )k)uk.

If there are any poles outside of the unit circle, then it is easy to see that
hk grows without bound. In particular, (18.4) is not bounded, so the system
is not BIBO stable. Moreover, suppose that H(z) has poles on the unit circle.
Such poles, it is easy to see, correspond to undamped complex exponentials.
As the sum of their absolute values is infinite, the system is still not stable.

Finally, if all of the poles are located inside the unit circle, then it is easy to
show that hk decays exponentially quickly, and the sum of the absolute values
is bounded. Thus, the system is stable. In sum, we find that a necessary
and sufficient condition for the BIBO stability of a causal LTI system (whose
transfer function is a rational function) is that all of the poles of the system lie
within the unit circle. (Though our proof only applies to systems with simple
poles, it is easy to extend the proof to the general case.)

18.9 From Transfer Function to Recurrence Relation

When analyzing a system, it is generally convenient to work with transfer
functions. When implementing a system, one generally needs a recurrence
relation—one that gives the next value of the output of a system in terms of
the current and previous values of the input and the previous values of the
output. It is simple to go from one form to the other.

Let X(z) be the Z-transform of the input sequence, let Y (z) be the Z-
transform of the output sequence, let H(z) be the transfer function of a causal
system, and let us assume that H(z) is a rational function of z. Then, we know
that

Y (z)
X(z)

= H(z) =
a0 + · · · + anzn

b0 + · · · + bmzm
.

Divide both the numerator and the denominator of the transfer function by
the highest power of z appearing in the transfer function. Generally speaking,
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this will be zm, as transfer functions are generally proper1. This will cause
the transfer function to be expressed in terms of negative powers of z. We find
that

Y (z)
X(z)

=
a0z

−m + · · · + anzn−m

b0z−m + · · · + bm
.

Cross-multiplying, we find that

(b0z
−m + · · · + bm)Y (z) = (a0z

−m + · · · + anzn−m)X(z).

Making use of the properties of the Z-transform, and inverting the Z-transform,
leads to the equation

b0yk−m + · · · + bmyk = a0xk−m + · · · + anxk+n−m.

Finally some algebraic manipulation leaves us with

yk = (−b0yk−m + · · · bm−1yk−1 + a0xk−m + · · · + anxk+n−m)/bm.

In a causal system, the current value of the output must be a function of
the current and previous value of the input and the previous values of the
output—and that is just what we have.

When implementing a digital filter using a microprocessor, one generally
“declares” that the first sample processed by the microprocessor arrived at
time—at index—zero. The recurrence relation for y0 requires the current value
of the input and previous values of the input and the output. Clearly the
previous values of the input should be taken to be zero. In a linear, causal
system, the output of the system before any signal is input to the system must
be zero. We see that the initial conditions of the system are all zero. That is,

xk = yk = 0, k = −1, . . . ,−m.

Let us consider a simple example of how one converts a transfer function
into a recurrence relation. Given the transfer function of the summer of Section
18.6,

H(z) =
z

z − 1
,

let us find the recurrence relation satisfied by the input to, and the output of,
the summer. We know that

Y (z)
X(z)

=
z

z − 1
=

1/z

1/z

z

z − 1
=

1
1 − z−1

.

Cross-multiplying, we find that

(1 − z−1)Y (z) = X(z).
1 A transfer function is said to be proper if it is a rational function and the degree

of its denominator is greater than, or equal to, the degree of its numerator.
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Converting back to an equation in the time domain, we find that

yk − yk−1 = xk ⇒ yk = xk + yk−1.

Considering (18.3) and noting that

yk−1 =
k−1∑

n=−∞
xn,

we find that our recurrence relation is indeed satisfied by the output of the
summer.

18.10 The Sinusoidal Steady-state Response of
Discrete-time Systems

Consider a stable LTI system whose transfer function is H(z). Suppose that
the system accepts samples that are taken every T seconds. If the input to
the system is a complex exponential with angular frequency ω = 2πf , the
samples seen by the system are

xk =
{

ejωkT k ≥ 0
0 k < 0 .

As the non-zero terms are of the form αk for α = ejωT , the Z-transform of
this sequence is simply

X(z) =
z

z − ejωT
.

The Z-transform of the output of the system, Y (z), is

Y (z) = H(z)
z

z − ejωT
.

Consider the partial fractions expansion of the output. It contains two sets
of terms. One term has the same pole as the input. All the rest “inherit” the
poles of H(z)—all of which lie inside the unit circle.

Consider the inverse Z-transform of Y (z). All the terms whose poles are
inherited from the transfer function correspond to damped exponentials. Thus,
in the steady state they make no contribution. In order to determine the
steady-state behavior, we need only know the coefficient of

z

z − ejωT
.

Let us calculate this coefficient.
We know that

Y (z) = H(z)
z

z − ejωT
=

Az

z − ejωT
+ poles inside unit circle.
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Multiplying through by z − ejωT and substituting z = ejωT , we find that

A = H(ejωT ).

The sinusoidal steady-state response—the response after all the transients
have died down—is H(ejωT ) times the input complex sinusoid.

If the input to the system is

xk =
{

cos(ωkT ) k ≥ 0
0 k < 0,

then by using Euler’s formula and the linearity of the Z-transform, we find
that the steady-state response is

1
2
[
H(ejωT )ejωkT + H(e−jωT )e−jωkT

]
.

As long as the polynomials that define H(z) have real coefficients, it is easy
to show that H(z) = H(z). Thus, we find that the steady-state output is

steady-state output =
1
2
(
H(ejωT )ejωkT + H(e−jωT )e−jωkT

)

=
1
2

(
H(ejωT )ejωkT + H(ejωT )ejωkT

)

= Re(H(ejωT )ejωkT )
= Re(H(ejωT )) cos(ωkT ) − Im(H(ejωT )) sin(ωT ).

This is easily seen to be equal to

|H(ejωT )| cos{ωkT + � [H(ejωT )]}.

That is, the system filters the input sinusoid. It amplifies it in a way that is
dependent on ω and it shifts its phase in a way that is dependent on ω.

The function H(ejωT ) is called the frequency response of the system and
|H(ejωT )| is known as the system’s magnitude response. Note that the fre-
quency (and magnitude) response is a periodic function of ω whose period is
2π/T . (This is perfectly reasonable, as sampling a signal aliases frequencies
above f = 1/(2T )—or ω = π/T—to frequencies below f = 1/(2T ).) Let us
take the region ω ∈ (−π/T, π/T ] as the period of interest. Assuming that the
polynomials of which H(z) is composed have real coefficients, we know that
H(e−jωT ) = H(ejωT ). Thus, the negative frequencies do not provide any new
information. In order to understand the entire frequency response, it is suf-
ficient to know the frequency response in the region ω ∈ [0, π/T ]. Generally
speaking, when a frequency (or magnitude) response is plotted, it is only plot-
ted in this range. (The angular frequency π/T corresponds to the frequency
1/(2T )—the Nyquist frequency of the system.)
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18.11 MATLAB and Linear Time-invariant Systems

MATLAB has two “levels” of commands for helping users analyze and design
linear time-invariant systems. One set of commands are standard command-
line functions that allow the user to define an LTI system and perform different
analyses on LTI systems. The second “class” of functions is a single command
that opens a graphical user interface that allows the user to perform many
analyses from within a single window.

18.11.1 Individual Commands

Before one can analyze an LTI using MATLAB, one must define the LTI for
MATLAB. MATLAB has a command, tf, for defining a transfer function
object. Assuming that one would like to describe the discrete-time system

H(z) =
aNzN + · · · + a0

bMzM + · · · + b0

whose sampling time is Ts, one gives MATLAB the command

H = tf([aN aN−1 . . . a0], [bM bM−1 . . . b0], Ts).

If one does not wish to specify a sampling time, then in place of Ts one enters
−1.

Suppose, for example, that one wanted to characterize a summer to MAT-
LAB, and suppose that the sampling period of the system is 1ms. Assuming
that one wants to refer to the transfer function as H, one would give MAT-
LAB the command H = tf([1 0],[1 -1], 0.001). MATLAB replies to this
command with

Transfer function:
z

-----
z - 1

Sampling time: 0.001

Having defined the system to MATLAB, it is now simple to have MATLAB
provide all sorts of information about the system. Perhaps the most commonly
used function is bode. This command causes MATLAB to produce the Bode
plots2 that correspond to a system. As we have mentioned, it is common to
plot the frequency response up to the angular frequency π/T .
2 The Bode plots that correspond to a system are plots of the system’s magnitude

response and the system’s phase response. The magnitude response is generally
given in dB, and the frequency axis is logarithmic. The phase response is given
in degrees, and the frequency axis is logarithmic. The plots are generally given
one above the other, with the frequency axes scaled identically.
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To display the frequency response of our system, one gives MATLAB the
command bode(H) (after defining H by using the tf command). MATLAB re-
sponds with Figure 18.1. The plot ends shortly after ω = 3,000. As Ts = 0.001,
the maximum angular frequency should be π/0.001 ≈ 3,000, and the plot’s
ending immediately past 3,000 rad s−1 is reasonable. Also, note that as the
frequency becomes progressively lower, the magnitude becomes progressively
larger. This is also to be expected. Recall that z = e0 = 1 is associated with
a constant input. The gain at that point is H(1) = ∞.
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Fig. 18.1. The Bode plots corresponding to the summer

If all that one is interested in is the magnitude response of a system—if
the phase response is not important—then one can make use of the bodemag
command. If one would like to know how a system responds to an impulse, one
can give MATLAB the command impulse. This command causes MATLAB
to plot the impulse response of the system. In our case, giving MATLAB the
command impulse(H) causes MATLAB to respond with Figure 18.2. As the
impulse response of a summer is a unit step, the plot is precisely what we
should have expected.

Finally, by giving MATLAB the command step(H), one causes MATLAB
to respond with the response of the system to a unit step function. In our
case, giving MATLAB the command step(H) causes MATLAB to respond
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Fig. 18.2. The impulse response of the summer

with Figure 18.3. Note that the output of the summer is an (almost perfectly)
straight line—as one would expect from a summer that sees a one at its input
from t = 0 onward. The slope is 1,000 because the summer samples its input
1,000 times each second.

All of the commands considered have many features that have not even
been hinted at here. MATLAB has several help facilities, and they can be
used to widen one’s horizons.

18.11.2 The ltiview Command

In addition to the commands bode, bodemag, impulse, and step, MATLAB
has a command called ltiview. This command allows the user to produce
and organize many different plots. Typing ltiview with no arguments at
the MATLAB prompt causes MATLAB to open a new window. By using the
window’s drop-down menus, one can request and organize the plots one would
like MATLAB to produce.

18.12 Exercises

1. Show that if the ROC of A(z) includes |z| = 1, then
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Fig. 18.3. The step response of the summer

A(1) =
∞∑

−∞
ak.

2. Show that if
−1∑

k=−∞
akz−k

converges for z = b, then it converges for all z that satisfy |z| < |b|.
3. Show that the residue of the function

z−n

z − 1

at z = 0 is −1 if n ≥ 1. (You may find the partial fractions expansion
helpful.)

4. Find the Z-transform of the sequence

ak =
{

0 k < 0
cos(ωk) k ≥ 0 .



136 18 Discrete-time Systems and the Z-transform

5. Prove that the Z-transform is linear by making use of the definition of
the Z-transform. Also, show that the ROC of the resulting Z-transform
contains the intersection of the ROCs of the two transforms whose com-
bination is being taken.

6. Find the Z-transform of the sequence

ak =
{

0 k < 0
k k ≥ 0 .

7. Let

ak =
{

1/k k ≥ 1
0 k < 1 .

Show that the sum that defines A(1) diverges while the sum that defines
A(−1) converges conditionally. Show that this implies that the ROC of
the Z-transform contains the region |z| > 1, and explain in what sense the
behavior of A(z) is “odd” on the circle |z| = 1.

8. Suppose that the functions below are taken to be the transfer functions
of causal systems. Which of the functions correspond to stable systems?
a)

H(z) =
z

z2 + 1
.

b)

H(z) =
z

z + 1/2
.

c)

H(z) =
z

z − 1/2
.

d)

H(z) =
z

z2 − z/2 + 1/4
.

9. Find the sequence that corresponds to each of the following Z-transforms
a)

H(z) =
z

(z − 1/2)(z + 1/2)
, |z| > 1/2.

b)

H(z) =
z

(z − 1/2)2
, |z| > 1/2.

c)

H(z) =
z

(z − 1/2)2
, |z| < 1/2.



18.12 Exercises 137

10. Find the Z-transforms of the following sequences
a)

{ak} = {0, 0, . . . , 0, 1, . . . , k2, . . .} = {k2uk}.
b)

{ak} = {. . . , 1/2, 1, 1/2, . . . , } =
{

1
2|k|

}
.

11. Sketch the magnitude response of the filter whose transfer function is

H(z) =
z

z − 1/2
.

Check your answer using the MATLAB bodemag command. (You will need
to set Ts = −1 in the tf command.)

12. Calculate the Z-transform of the sequence {δk}.
13. Find the recurrence relation that corresponds to the causal systems de-

scribed by each of the following transfer functions. Let the sequence input
to the system be xk and the sequence output by the system be yk.
a)

H(z) =
z

z2 − 1
.

b)

H(z) =
z − 1/2

z2 − z/2 − 1/2
.

14. Calculate the inverse Z-transform of

A(z) =
z

z − α
, |z| < α.

You may wish to write the function as a Taylor series in power of z/α.
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Filter Types

Summary. Analog filters are generally built using resistors, capacitors, inductors,
and operational amplifiers. The impulse response of such filters begins when the
impulse arrives and continues indefinitely. A filter with an impulse response of this
type is known as an infinite impulse response (IIR) filter.

In this chapter, we discuss the filter types available to the engineer designing
digital filters. Some digital filters are IIR filters, while others are finite impulse
response (FIR) filters. An FIR filter is a filter whose impulse response is identically
zero after a certain time.

Keywords. impulse response, IIR, FIR.

19.1 Finite Impulse Response Filters

Suppose that the impulse response of a digital filter is

hn, |n| ≤ N,

and is zero for all n outside of this range. Filters of this sort—filters whose
impulse response consists of a finite number of terms—are called finite impulse
response (FIR) filters. By making use of the principle of superposition, it is
easy to see that the response, yn, of the filter to a generic signal xn is

yn =
∞∑

k=−∞
xkhn−k

= xn−NhN + xn−(N−1)hN−1 + · · · + xnh0 + · · · + h−Nxn+N .

That is, yn is a weighted sum of samples of the input. The transfer function
of an FIR filter can be expressed as

H(z) = h−NzN + · · · + h−1z
1 + h0 + h1z

−1 + · · · + hNz−N

=
z2Nh−N + · · · + zNh0 + · · · + hN

zN
, 0 < |z| < ∞.
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For any bounded input sequence {xn}, for any input sequence for which |xn| ≤
C, we find that

|yn| ≤ |h−Nxn+N + · · · + h0 + · · ·hNxn−N |
≤ (|h−N | + · · · + |hN |) C.

Thus, the output of the FIR filter is bounded whenever the input is. We find
that FIR filters are always stable.

19.2 Infinite Impulse Response Filters

Infinite impulse response (IIR) filters are filters whose impulse response per-
sists indefinitely. They are precisely those filters whose transfer functions do
contain finite non-zero poles. For example, the function

H(z) =
1

z − 1/2
, |z| > 1/2

is the transfer function of an IIR filter. Its impulse response is easy to calculate.
It is easy to see that (for |z| > 1/2) we have

H(z) =
1

z − 1/2

= z−1 1
1 − z−1/2

= z−1
∞∑

k=0

(z−1/2)k

= (1/2)0z−1 + (1/2)1z−2 + · · · + (1/2)k−1z−k + · · · .
Thus, the impulse response of the filter is

hk =
{

0 k ≤ 0
(1/2)k−1 k ≥ 1 .

19.3 Exercises

1. a) What is the impulse response of the filter whose transfer function is

H(z) =
Tsz

z − 1
, |z| > 1?

(Here Ts is the sampling period.)
b) Is the filter whose transfer function is given by H(z) an FIR filter or

an IIR filter?
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c) Find the filter’s output, yk, as a function of its input, xk. You may
assume that xk = 0 for all k < 0.

d) What operation does this filter approximate when Ts << 1?
2. What is the impulse response of the filter defined by

H(z) =
z

z + 1/2
, |z| > 1/2?

Is this filter an FIR or an IIR filter? Explain!
3. What is the impulse response of the filter defined by

H(z) =
z

z + 1/2
, |z| < 1/2?

Is this filter an FIR or an IIR filter? Explain!
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When to Use C (Rather than Assembly
Language)

Summary. In many introductory microprocessor (or microcontroller) courses, one
is taught to program in assembly language. Until now, it was probably best to
program in assembly language, but at this point it is probably best to move to C.
In this chapter, we discuss why one might want to make this change, and we give a
first example of implementing a filter using a program written in C.

Keywords. assembly language, C, low-pass filter, RC filter.

20.1 Introduction

In introductory courses in microprocessors, one often spends much of one’s
time controlling the processor and its peripherals. Assembly language is built
for such tasks and makes them relatively easy. In particular, the machine
language of the 8051 family of microprocessors supports many instructions
that work on individual bits. When every bit is significant—as it is when one
is setting up an SFR—this ability is very important.

In several of the early laboratories, we used a microprocessor as a data-
gathering tool. We set up its SFRs and let the microprocessor run. In such a
case, it makes sense to use assembly language. In the laboratories that follow,
we use the microprocessor (often a microcontroller) to do calculations. When
one is interested in relatively heavy-duty calculations, it often makes sense
to move to a high-level language. In our case, that language is C. For more
information about the version of C we used with the ADuC841, see [13].

20.2 A Simple Low-pass Filter

In order to make the first C program relatively simple, we consider a simple
infinite impulse response (IIR) filter. Perhaps the simplest IIR digital filter is
the (causal) filter defined by the equation
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yn = (1 − α)yn−1 + αxn, 0 < α < 1, y−1 = 0.

The Z-transform of {yn}, Y (z), satisfies the equation

Y (z) = (1 − α)z−1Y (z) + αX(z).

We find that
Y (z) =

αz

z − (1 − α)
X(z),

and the filter’s transfer function is

T (z) =
αz

z − (1 − α)
.

Clearly, T (1) = 1, and the (only) pole of this system is (1 − α). To keep the
pole inside the unit circle—to keep the filter stable—we find that |(1−α)| < 1
or that 0 < α < 2.

20.3 A Comparison with an RC Filter

The transfer function of an RC low-pass filter is

T (s) =
1

RCs + 1
.

If y(t) is the output of the filter and x(t) is the filter’s input, then (assuming
that y(0) = 0) we find that [6]

RCy′(t) + y(t) = x(t).

If we want an analogous discrete-time system, then it is reasonable to consider
samples of the input, xn = x(nTs), and to let the output, yn, satisfy

RC
yn − yn−1

Ts
+ yn = xn. (20.1)

The term
yn − yn−1

Ts

should tend to y′ as Ts → 0. Rearranging terms in (20.1), we find that

yn =
RC

RC + Ts
yn−1 +

Ts

RC + Ts
xn, y0 = 0. (20.2)

If we let α = Ts
RC+Ts

, then this is precisely the type of filter we have been
dealing with. Note that in (20.2) we find that 0 < α < 1, whereas the filter is
actually stable for 0 < α < 2.
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20.4 The Experiment

Write a C program to implement the filter of Section 20.2. It should be possible
to achieve a sample rate of 5,000 samples s−1. Try a variety of values of α.
Make sure that some of the values exceed one. For a square wave input, what
does the output look like when α < 1? What about when α > 1? In what
way(s) is the output when α > 1 similar to the output of a standard RC
low-pass filter? In what way(s) is it different?

Compare the C code with the computer-generated assembly language code.
(To cause the computer to include the assembly code in the listing when using
the Keil μVision3 IDE, you must change the options for the project.) Note that
in the sections where one is setting up the registers, the assembly language
code is not much longer than the C code. However, in the regions where the C
code is performing calculations, the assembly language code is much longer.

20.5 Exercises

1. Find and plot the magnitude response of the filter described in Section
20.2 when α = 3/2.

2. Find the impulse response of the causal filter whose transfer function is

T (z) =
αz

z − (1 − α)
, 0 < α < 2.

What qualitative change does the impulse response undergo when α goes
from being less than one to being more than one?

3. Show that for 1 < α < 2, the causal filter whose transfer function is

T (z) =
αz

z − (1 − α)

is a high-pass filter.
4. a) Use Simulink r© to simulate the “RC-type” filter of Sections 20.2 and

20.3 for a variety of values of 0 < α < 1 and 1 < α < 2. Let the
sampling period be 0.01 s.

b) Examine the filter’s response to a variety of low- and high-frequency
sinewaves both when the system includes an anti-aliasing filter and
when it does not.

c) Use the MATLAB command bode to examine the frequency response
of the filters that were implemented. To what extent do the simulation
results agree with the information presented on the Bode plots?
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Two Simple FIR Filters

Summary. Having seen (and implemented) a simple IIR filter, we consider two
simple FIR filters. In this chapter, we develop both a simple FIR low-pass filter and
a simple FIR high-pass filter.

Keywords. averaging filter, high-pass filter, low-pass filter, FIR filters.

21.1 Introduction

The averaging filter is a simple finite impulse response (FIR) low-pass filter.
Let Fs be the sampling rate of the system, and let Ts be its reciprocal, the
sampling period. Let xk = x(kTs) be the kth sample of the input (where k
starts from 0), and let yk be the output of the filter at time t = kTs. Then,
an N -coefficient (also known as an N -tap) low-pass filter is defined by the
equation

yn =
xn + xn−1 + · · · + xn−N+1

N
.

This filter’s output, yn, is the running average of the last N samples of the
input, xn.

The Z-transform of the sequence {yn} is

Y (z) = (1 + z−1 + · · · + z−N+1)X(z)/N. (21.1)

Summing the finite geometric series, we find that the transfer function of the
filter, TLP(z), is

TLP(z) =
1
N

1 − z−N

1 − z−1
.

Substituting z = e2πjfTs , we find that the frequency response of the filter is
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TLP(e2πjfTs) =
1
N

1 − e−2NπjfTs

1 − e−2πjfTs

=
1
N

e−(N−1)πjfTs
sin(NπfTs)
sin(πfTs)

.

Making use of L’hôpital’s rule (or, more properly, not using the formula for
the geometric series when f = k/Ts but simply summing the series), we find
that at f = 0 the transfer function is 1; at no other point is it greater. (See
Exercise 3.)

The simplest FIR high-pass filter is given by the equation

yn =
1
N

(
xn − xn−1 + · · · + (−1)kxn−k + · · · − xn−N+1

)

where N is even. Passing to the Z-transform of {yn}, Y (z), we find that

Y (z) =
1
N

(
1 − z−1 + · · · + (−1)kz−k + · · · − z−N+1

)
X(z).

The transfer function of the filter, THP(z), is

THP(z) =
1
N

(
1 − z−1 + · · · + (−1)kz−k + · · · − z−N+1

)

=
1
N

1 − (−1)Nz−N

1 + z−1
. (21.2)

As by assumption N is even, we find that

THP(z) =
1
N

1 − z−N

1 + z−1
.

Substituting z = e2πjfTs , we find that the frequency response of the filter is

THP(e2πjfTs) =
1
N

1 − e−2NπjfTs

1 + e−2πjfTs

=
1
N

e−NπjfTs

e−πjfTs

eNπjfTs − e−NπjfTs

eπjfTs + e−πjfTs

=
1
N

e−(N−1)πjfTsj
sin(NπfTs)
cos(πfTs)

.

Note that when f = 0, the frequency response of this filter is zero. The filter
does not pass DC at all. Plugging z = e2πj(1/(2Ts))Ts = −1 into (21.2), it is
easy to see that when f = 1/(2Ts)—which is the “Nyquist frequency” for the
filter—the filter’s frequency response is 1. In the sinusoidal steady state, the
filter passes high-frequency signals without altering them.
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21.2 The Experiment

Please modify the program that implements a simple IIR filter to implement
the simple averaging filter with five elements in the average. A sample rate of
5,000 samples s−1 should be achievable. Note that there is no need to buffer the
samples of the output—they are never reused. (That is an essential difference
between FIR and IIR filters.)

Please examine the frequency response of the filter. Use a sinewave gener-
ator and an oscilloscope. Does practice agree with theory?

Having finished with the averaging filter, implement the simple high-pass
filter with N = 6. Once again, a sample rate of 5,000 samples s−1 should
be achievable. Using a sinewave generator and an oscilloscope, examine the
filter’s frequency response. Do practice and theory agree?

21.3 Exercises

1. Consider a simple averaging filter with five taps—when N = 5.
a) Plot the magnitude response of the filter as a function of fTs.
b) At what frequencies do the zeros of the transfer function occur?
c) Give an intuitive explanation of the answer to the previous section.

2. Consider the six-tap high-pass filter—the filter for which N = 6.
a) Plot the magnitude response of the filter as a function of fTs.
b) At what frequencies do the zeros of the transfer function occur?
c) Give an intuitive explanation of the answer to the previous section for

at least one of the zeros of the transfer function.
3. Make use of (21.1), the triangle inequality, and the definition of the fre-

quency response to show that

|TLP(e2πjfTs)| ≤ 1.
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Very-narrow-band Filters

Summary. In the preceding chapter, two simple FIR filters were presented. In this
chapter, we consider an IIR bandpass filter. In the design of the IIR bandpass filter, a
simple FIR notch filter is used. By adding feedback to the system, a programmable-
bandwidth IIR filter is produced.

Keywords. notch filter, programmable-bandwidth filter, feedback.

22.1 A Very Simple Notch Filter

Consider the FIR filter whose transfer function is

Tsimple(z) = (1− e2πjFTsz−1)(1− e−2πjFTsz−1) = 1− 2z−1 cos(2πFTs) + z−2.

It is clear that the frequency response of this filter has exactly two zeros, and
they are located at z = e±2πjFTs . That is, this filter has a “notch”—a zero in
its frequency response—at ±F Hz.

22.2 From Simple Notch to Effective Bandpass

Consider the system of Figure 22.1. Clearly,

Vout(z) = Vin(z) − KTsimple(z)Vout(z).

Manipulating this equation allows us to show that the transfer function of the
system with feedback is

Tfeedback(z) =
Vout(z)
Vin(z)

=
1

1 + KTsimple(z)
.

Tsimple(z) has only the two zeros found above. Thus, when f = ±F Hz, the
frequency response is 1. If K is sufficiently large, it is easy to see that at all
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frequencies far enough from ±F , the transfer function will be approximately
0. That is, this filter blocks all frequencies except those very near ±F—this is
a narrow-band bandpass filter. By making K sufficiently large, the filter can
be made as narrow-band as desired.

Fig. 22.1. An interesting use of feedback

22.3 The Transfer Function

It is easy to see that

Tfeedback(z) =
1

1 + K(1 − 2 cos(2πFTs)z−1 + z−2)
.

This leads to a simple formula for yk (the current value of the output) in
terms of xk (the current value of the input) and the previous values of the
output. (See Exercise 2.)

22.4 The Experiment

Use the technique presented in this chapter to implement a bandpass filter
that passes 1,350 Hz. Let the sampling rate of the filter be 5,400 samples s−1.
Examine the filter with a variety of gain values. Use a digital oscilloscope to
store the output of the filter at 1,450 Hz for each of the gains you implement.
Label the output, and submit it with the program.
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22.5 Exercises

1. Explain why putting KTsimple(z) in the “forward path” (in the upper
portion of the system), rather than in the feedback loop, gives a notch
filter that removes F Hz signals. (Give a reasonably intuitive explanation.)

2. Find the equation that expresses the output of the filter described in this
chapter in terms of the filter’s previous outputs and the filter’s current
and previous inputs.

3. Show that the filter of Section 22.3 is stable for all K > 0.
4. Examine the magnitude response of the effective bandpass filter when

K = 10, F = 1 kHz, and Ts = 1/5,400 s. Note that the maximum value
of the magnitude is not 0 dB, and it does not occur at precisely 1 kHz.
Explain how this can happen and why this does not contradict the theory
developed in this chapter.
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Design of IIR Digital Filters: The
Old-fashioned Way

Summary. In this chapter, we discuss a systematic method of designing low-pass
infinite impulse response (IIR) digital filters. As this procedure requires that one
first design an analog low-pass filter, we start by discussing the properties of analog
low-pass filters, and we proceed to techniques for designing such filters. Then, we
consider one technique for converting such filters into digital low-pass filters.

Keywords. analog filters, Butterworth filter, Chebyshev filter, elliptic filter, bilinear

transform.

23.1 Analog Filter Design

There are three very standard types of analog filters: Butterworth filters,
Chebyshev filters, and elliptic filters. As this is not a course in analog filter
design, we only describe the filters briefly.

Butterworth filters are also called “maximally flat” filters. The square of
the magnitude of a low-pass Butterworth filter satisfies the equation

|HB(jω)|2 =
1

1 + (jω/jωc)2N
.

By making use of the fact that for small |x| we know that 1/(1 + x) ≈ 1 − x,
we find that near ω = 0 we can approximate the square of the magnitude by

|HB(jω)|2 ≈ 1 − (ω/ωc)2N .

For values of ω that are much smaller than ωc, this is very close to one. The
filter is very flat near ω = 0.

Chebyshev filters have the form

|HC(jω)|2 =
1

1 + ε2V 2
N (ω/ωc)
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where VN (x) are the Chebyshev polynomials, and ωc is the cut-off frequency
of the filter1. For |x| ≤ 1, the Chebyshev polynomials are defined by the
equation

VN (x) = cos(N cos−1(x)).

It is easy to see that VN (x) is a polynomial when 1 ≥ x ≥ −1. For example,
with N = 1, we have V1(x) = x, and with N = 2, we have

V2(x) = cos(2 cos−1(x)) = 2 cos2(cos−1(x)) − 1 = 2x2 − 1.

In Exercise 4, it is shown that

cos((N + 1)θ) = 2 cos(θ) cos(Nθ) − cos((N − 1)θ).

Making use of this identity, we find that

VN+1(x) = cos((N + 1) cos−1(x))
= 2 cos(cos−1(x)) cos(N cos−1(x)) − cos((N − 1) cos−1(x))
= 2xVN (x) − VN−1(x).

By a simple induction, we see that for all N ≥ 1, the functions VN (x) are Nth-
order polynomials. Though we derive the polynomials by considering |x| ≤ 1,
the polynomials we find are, of course, defined for all x.

By noting that N cos−1(x) goes from 0 to Nπ as x goes from 1 to −1, we
find that cos(N cos−1(x)) passes through zero N times in this region. Thus,
all N zeros of the Nth-order polynomial VN (x) are located between −1 and 1.
This shows that outside this region the polynomial cannot ever return to zero.
Though we have not proved it, outside [−1, 1] the polynomial V 2

N (x) increases
monotonically. (See Exercise 5 for a proof of this fact.)

We see that VN (ω/ωc) has ripples—oscillates—in the passband but not
the stopband. So does the filter designed using the Chebyshev polynomials.
Because we allow some ripples, we are able to make the transition region
narrower for the same-order filter. (There is a second type of Chebyshev filter
with ripples in the stopband but not in the passband.) See Figure 23.1 for a
comparison of the magnitude responses of several filters of different types and
orders.

The design of elliptic filters is more complicated, and we do not consider it
here. We do, however, describe the most important properties of elliptic filters.
Elliptic filters have ripples in the passband and the stopband. In that sense,
they are not very ideal filters. On the other hand, they have the narrowest
transition region of the three filter types presented. If keeping the filter order
small is important, then elliptic filters are often the way to go.
1 For Chebyshev filters, the cut-off frequency is not generally the 3 dB down point—

the point at which the magnitude of the filter’s response falls to 1/
√

2 of its
maximum value.
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Fig. 23.1. The magnitude responses corresponding to several different filters. The
common cut-off frequency of the filters is 1 rad s−1. In the case of the Chebyshev
filters, ε = 1.

23.2 Two Simple Design Examples

Let us consider the Butterworth filters that correspond to N = 1 and N =
2. Until now, we have been considering |HB(jω)|2. By definition, H(jω) =
H(s)|s=jω. Also, note that given a rational function with real coefficients

H(s) =
a0 + · · · + ansn

b0 + · · · bmsm
, ai, bi ∈ R,

it is clear that

H(jω) =
a0 + · · · + an(jω)n

(
b0 + · · · + bm(jω)m

)

real coefficients=
a0 + · · · + an(−jω)n

b0 + · · · + bm(−jω)m

= H(−jω).
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Assuming that |HB(jω)|2 is truly the square of the magnitude of a transfer
function with real coefficients, then we know that

|HB(jω)|2 = HB(jω)HB(jω)
real coefficients= HB(jω)HB(−jω)

= HB(s)HB(−s)|s=jω.

Let us now look for HB(s) for N = 1. We find that

|HB(jω)|2 =
1

1 + (jω/jωc)2
.

That is,

HB(s)HB(−s) =
1

1 + (s/jωc)2
=

1
1 − s2/ω2

c

=
1

1 + s/ωc

1
1 − s/ωc

.

As we want a stable filter, we must make sure that all of the filters poles are
in the left half-plane. Thus, we select

HB(s) =
1

1 + s/ωc
. (23.1)

This is the standard RC-type low-pass filter.
What happens when N = 2? We find that

HB(s)HB(−s) =
1

1 + (s/jωc)4

=
1

1 + s4/ω4
c

=
1

1 − js2/ω2
c

1
1 + js2/ω2

c

=
1

1 − ejπ/4s/ωc

1
1 + ejπ/4s/ωc

1
1 − e3jπ/4s/ωc

1
1 + e3jπ/4s/ωc

=
1

1 +
√

2s/ωc + s2/ω2
c

1
1 −√

2s/ωc + s2/ω2
c

.

It is easy to see that if one selects

HB(s) =
1

1 +
√

2s/ωc + s2/ω2
c

=
ω2

c

s2 +
√

2sωc + ω2
c

,

then one has a stable second-order Butterworth filter, and

HB(s)HB(−s) =
1

1 + s4/ω4
c

.
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23.3 Why We Always Succeed in Our Attempts at
Factoring

Given a function that we thought might be the square of the absolute value
of the frequency response of some filter, we have, so far, always been able to
find a stable filter whose transfer function gives rise to just such a frequency
response. Is this a coincidence? It is not.

We show that given a function G(ω)

• that is a quotient of polynomials in ω2 with real coefficients, G(ω) =
P (ω2)/Q(ω2);

• that is bounded; and
• that is non-negative, G(ω) ≥ 0,

and letting s = jω, it is always possible to factor G(s/j) as

G(s/j) = H(s)H(−s)

where all of the poles of H(s) are located in the left half-plane (and all of
the zeros of H(s) are located in the left half-plane or on the imaginary axis).
(Requiring that G(ω) be a function of ω2 makes the magnitude response of
the filter even—as is the case for filters whose impulse response is real.)

Assume that P (ω2) and Q(ω2) have no common factors. (If they initially
have any common factors, cancel them and redefine P (ω2) and Q(ω2).) As
G(ω) is bounded and the polynomials P (ω2) and Q(ω2) have no common
factors, the function Q(ω2) has no zeros for any real value of ω. Q(ω2) never
changes sign; we can pick its sign to be positive. As G(ω) is non-negative, we
find that P (ω2) is non-negative as well.

All polynomials with real coefficients can be factored into linear and
quadratic factors such that the factors have real coefficients, and the quadratic
factors are irreducible. Let us consider Q(ω2) as a polynomial in ω2. As
Q(ω2) > 0, any linear factor in ω2 must be of the form ω2 + c2, c > 0.
Let s = jω. Then, this factor can be written −s2 + c2. This in turn can be
written

−s2 + c2 = (s + c)(−s + c) = r(s)r(−s),

and the lone zero of which r(s) is possessed is located in the left half-plane.
The remaining factors of Q(ω2) are irreducible quadratics in ω2—they are of
the form

ω4 + aω2 + b,

and, as the factors are irreducible quadratics in ω2, a2 − 4b < 0. As the
polynomial is always positive, we find that b > 0. Thus, |a| < 2

√
b.

Letting s = jω, we find that the factor is of the form

s4 − as2 + b.

Let us see if this can be factored as we need—as
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r(s)r(−s) = (s2 + αs + β)((−s)2α(−s) + β)

where the first factor, r(s), has no zeros in the right half-plane. The product
above is equal to

s4 + (2β − α2)s2 + β2.

Equating coefficients with our original fourth-order polynomial, we find that
β2 = b and 2β − α2 = a. As we would like r(s) to have all of its zeros in the
right half-plane, the polynomial’s coefficients must all have the same sign [6].
Thus, we let β = +

√
b. We find that 2

√
b − α2 = −a. That is, α2 = 2

√
b + a.

As we have shown that 2
√

b + a > 0, the square root is real, and we find that
α =

√
2
√

b + a. We have shown that each factor of Q(ω2) can be factored in
precisely the fashion that we need.

P (ω2) is a little harder to handle, because in addition to having terms of
the types Q(ω2) has, it can have zeros. Because P (ω2) cannot change sign, any
zeros of the form ω2 − c, c > 0 must have even multiplicity. Let us consider
a single such double zero in ω2, (ω2 − c)2. Let us see if our new polynomial
can be factored as needed. Letting s = jω, we find that we must consider
(s2 + c)2. Noting that

(s2 + c)2 = r(s)r(−s) ≡ (s2 + c)((−s)2 + c),

we find that the new type of factor can itself be factored. The last possible
type of zero is the polynomial ω2 itself. As this function is non-negative, it
need not appear with even multiplicity. Letting ω = s/j, we find that

−s2 = r(s)r(−s) = s(−s).

Here, too, we have succeeded in factoring the term of interest.
We have shown that given a function G(ω) that satisfies the list of prop-

erties above, one can always find a function H(s) such that

H(s)H(−s) = G(s/j).

As the polynomials that make up the denominator of H(s) have all of their
roots in the left half-plane, the function H(s) corresponds to a stable system.
Additionally, the polynomials that make up the numerator can be chosen in
such a way that all of their roots lie in the left half-plane or on the imaginary
axis.

23.4 The Bilinear Transform

We have described several types of analog filters, and we have seen how to
design Nth-order continuous-time Butterworth and Chebyshev filters. How
can we take this knowledge and, without needing to think too much, convert
it into knowledge about a digital filter?
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We use the bilinear transform. The bilinear transform, which we develop
momentarily, can be used to transform the transfer function of a stable analog
filter into the transfer function of a similar stable digital filter.

The bilinear transform is defined by

z = B(s) ≡ 1 + (T/2)s
1 − (T/2)s

.

Its inverse is
s = B−1(z) =

2
T

z − 1
z + 1

.

This mapping is (essentially) a one-to-one and onto mapping of the complex
plane into itself in such a way that B(s) maps the imaginary axis onto the
unit circle, the left half-plane into the interior of the unit circle and the right
half-plane into the exterior of the unit circle [6]. One might say that it takes
stable causal filters into stable causal filters. It is also easy to see that the
bilinear transform takes Nth-order filters into Nth-order filters.

To see how the bilinear transform maps the unit circle, consider s = B−1(z)
for z = eTj2πf . We find that

B−1(z) =
2
T

eTj2πf − 1
eTj2πf + 1

=
2
T

j tan(T2πf/2).

When Tf is small, this is approximately j2πf—which is the correct frequency
in the “continuous-time domain.”

Consider a continuous-time filter whose transfer function is H(s) and
whose frequency response is H(jω). Making use of the bilinear transform to
convert this filter into a discrete-time filter, we find that the transfer function
of the discrete-time filter is given by H(B−1(z)), and its frequency response
is given by

H(B−1(ej2πfT )) = H(2j tan(Tπf)/T ).

Because when θ is small, tan(θ) ≈ θ, we find that as long as Tf is small,

H(B−1(ej2πfT )) ≈ H(2jπf) = H(jω).

That is, as long as f is small relative to the sampling frequency, the frequency
response of the discrete-time filter is approximately the same as that of the
continuous-time filter from which it was derived. (See Exercise 3 for informa-
tion about prewarping—which is a way of dealing with the non-linearity in
the mapping from the unit circle to the imaginary axis.)

23.5 The Passage from Analog Filter to Digital Filter

Let us consider the simple RC-type filter of (23.1)—the first-order Butter-
worth filter—and transform it into a digital filter. We replace every s with
B−1(z). We find that
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T (z) =
1

1 + B−1(z)/ωc
=

Tωc(z + 1)
Tωc(z + 1) + 2(z − 1)

.

The pole of this filter is located at

z =
2 − Tωc

2 + Tωc
.

If T is small enough, then this number is positive and less than one. When T
is large, the pole is negative and less than one in absolute value. Additionally,
T (z = 1) = 1—the system passes DC signals without change.

23.6 MATLAB and the Bilinear Transform

MATLAB r© has a command, c2d, whose purpose is to convert continuous-
time filters to discrete-time filters. The command has many options—as there
are many ways of converting continuous-time filters to discrete-time filters.

Suppose that one would like to take a second-order, low-pass Butterworth
filter whose cut-off frequency is 100 Hz, and convert it into a digital filter whose
sampling rate is 1 kHz. On p. 158 we designed a second-order Butterworth fil-
ter. The program of Figure 23.2 defines the continuous-time transfer function,
H, and then uses c2d to convert the filter to a discrete-time filter. Note that
when used without a sample time, the command tf produces a continuous-
time transfer function object (and MATLAB uses s to represent the transfer
function’s variable). The format of the c2d command, when used to convert a
continuous-time transfer function object to a discrete-time transfer function
object, is

c2d(continuous-time transfer function, sample time, ’tustin’).

The third element of the command, the string ’tustin’, tells MATLAB to make
the conversion using the bilinear transform2, rather than one of the other
methods for converting continuous-time transfer functions to discrete-time
transfer functions. The command hold on causes MATLAB to plot figures on
the same set of axes. This makes it easy to use MATLAB to compare plots.
Additionally, the command legend causes MATLAB to produce a legend for
a figure.

The figure output by the sequence of commands given in Figure 23.2 is
presented in Figure 23.3. Note that the frequency responses are substantially
identical at low frequencies, but as the Nyquist frequency is approached the
filters behave differently. This is precisely what we should have expected. At
low frequencies the frequency response of the continuous-time filter is mapped
into that of the discrete-time filter almost without change. As the frequency
increases, the mapping starts to warp the response. That is why the responses
differ at high frequencies.
2 Arnold Tustin (1899–1994) introduced the bilinear transform that bears his name

to the control community to relate discrete-time and continuous-time systems [2].
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omega_c = 2 * pi * 100;

T = 0.0005;

H = tf([omega_c^2],[1 sqrt(2)*omega_c omega_c^2])

figure(1)

bodemag(H, ’.-k’, {2*pi, 2*pi*1000})

H_disc = c2d(H, T, ’tustin’);

hold on

bodemag(H_disc , ’k’, {2*pi, 2*pi*1000})

legend(’continuous time’, ’discrete time’, 0)

Fig. 23.2. The MATLAB code for converting a continuous-time filter into a discrete-
time filter using the bilinear transform
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Fig. 23.3. A comparison of the magnitude response of a continuous-time filter and
the discrete-time filter designed by transforming the continuous-time filter into a
discrete-time filter by using the bilinear transform
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23.7 The Experiment

Design a third-order analog Butterworth filter whose cut-off frequency is
135 Hz. Use the bilinear transform to convert the analog design into a digital
one. Let Ts = 1/1,350 s. In the laboratory report, show all the computations.
MATLAB may be used to help with the computations, but its built-in filter-
design tools may not be used to help with the design. Implement the filter
you design in C, and demonstrate that the filter works as predicted.

23.8 Exercises

1. Show that
dn

dωn
|HB(jω)|2

∣∣∣∣
ω=0

= 0, n = 1, . . . , 2N − 1.

2. Show that when the pole of the filter in Section 23.5 is negative, the step
response of the digital filter is not monotonic even though the filter is
first-order. Could this happen to the stable analog filter from which the
digital filter was designed?

3. What is prewarping? When should one make use of this technique?
4. Derive the identity

cos((N + 1)θ) = 2 cos(θ) cos(Nθ) − cos((N − 1)θ).

You may find this problem easier if you “rephrase” the identity as

cos((N + 1)θ) + cos((N − 1)θ) = 2 cos(θ) cos(Nθ).

5. Show that for x outside the interval [−1, 1], the function |VN (x)| increases
monotonically. You may wish to proceed as follows:
a) Note that because VN (x) has N distinct zeros in the region [−1, 1],

the function V ′
N (x) must have N − 1 zeros in that region. In fact, the

N −1 zeros must be sandwiched between the N zeros of VN (x). (This
is a simple consequence of Rolle’s theorem [17].)

b) As V ′
N (x) is an N − 1th-order polynomial, these N − 1 zeros are all of

the zeros of V ′
N (x).

c) We find that the value of the derivative of VN (x) is of one sign to the
left of the first zero and is of one sign to the right of the last zero.
This allows us to finish the proof.

6. a) Calculate HC(s) for N = 2, ε = 1, and ωc = 1.
b) Make use of the bilinear transform to produce a second-order digital

Chebyshev filter from the filter of the previous section. Let Ts = 10ms.
c) Examine the magnitude responses of the filters of the previous sections

by making use of the MATLAB bodemag command. Compare the
responses of the discrete-time and continuous-time systems.

7. Show that when Tωc = 2, the filter of Section 23.5 is an FIR low-pass
filter.
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New Filters from Old

Summary. In Chapter 23, we saw how to design low-pass digital filters using low-
pass analog filters as a starting point. In this chapter, we describe one way of taking
digital low-pass filters and converting them into other types of digital filters by
transforming the filters’ transfer functions according to simple rules.

Keywords. filter transformations, Blaschke products.

24.1 Transforming Filters

Let H(z) be the transfer function of a stable filter, and let G(z) be a function
that

• is analytic for |z| ≤ 1, and
• satisfies |G(z)| = 1 when |z| = 1.

What can be said about H(G(z))? As G(z) maps points on the unit circle back
to the unit circle, we can say that G(z) “reorganizes” the frequency response
of the filter. Functions like G(z)—which map the unit circle into itself—might
possibly help us reorganize the frequency response of a low-pass filter into
that of another type of filter.

24.2 Functions that Take the Unit Circle into Itself

It is easy to show that the absolute value of an analytic function, G(z), in
a domain is less than or equal to the absolute value of the function on the
boundary of the domain—and this shows that if G(z) takes the unit circle into
itself, then inside the unit disk, |G(z)| ≤ 1. The maximum modulus principle
[3, p. 136] asserts that if the absolute value of an analytic function achieves
its maximum inside a “reasonable domain,” then the function is a constant
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within the domain. Given an analytic function f(z) with no zeros inside a
given domain, and considering the function 1/f(z), one can show that the
minimum of the absolute value of the function in a “reasonable domain” must
be greater than or equal to the minimum value of the absolute value on the
boundary.

Let us consider a generic function, G(z), that is analytic in the closed unit
disk, |z| ≤ 1, and that maps the unit circle into the unit circle. Because G(z)
maps the unit circle into the unit circle, we find that |G(ejθ)| = 1. Thus, we
find that inside the unit disk, |G(z)| ≤ 1. If in addition G(z) has no zeros in
the unit disk, then we find that inside the unit disk |G(z)| ≥ 1. This shows
that if G(z) has no zeros inside the unit disk, then |G(z)| = 1 throughout the
unit disk. The maximum modulus principle then asserts that G(z) = c. In
light of the fact that |G(z)| = 1, we find that G(z) = ejθ (where 0 ≤ θ < 2π).

This fact can be used to characterize all functions that are analytic inside
the unit disk and that map the unit circle into itself. Let us consider a function
of this sort, G(z), that has a single zero of multiplicity one inside the unit disk
at the point z0. Consider the function

f(z) = G(z)
1 − z0z

z0 − z
.

Clearly, f(z) has no zeros inside the unit disk—we have removed the only zero
it had. The zero we have added is located at z = 1/z0, and |z| > 1. Let us
consider how f(z) maps the unit circle.

When z = ejθ, the second part of f(z) satisfies

1 − z0ejθ

z0 − ejθ
=

1
ejθ

1 − z0ejθ

z0e−jθ − 1

=
1

ejθ

1 − c

c − 1
, c = z0ejθ.

The absolute value of this expression is always one. Thus, the function f(z)
is analytic, maps the unit circle into the unit circle, and has no zeros inside
the unit disk. We conclude that f(z) = ejθ (where θ is in no way related to
the θ in the proof). We find that (at least inside and on the unit disk)

G(z) = ejθ z0 − z

1 − z0z
.

As we know that |G(z)| = 1 on the unit circle, we know that |G(z)| ≤ 1
in the closed unit disk—that G(z) maps the unit disk into the unit disk. It
is easy to show that G(z) is a one-to-one and onto mapping of the complex
plane into itself. (See Exercise 5.) As we know that G(z) maps the unit circle
into itself, maps the unit disk into itself, and that G(z) is continuous, it is
easy to show that G(z) must also map the exterior of the unit disk into the
exterior of the unit disk.
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The same trick that we used to remove a single zero can be used to remove
as many zeros as the function has. Thus, all functions that are analytic inside
and on the unit disk, that have a finite number of zeros inside the unit disk,
and that map the unit circle into itself must be of the form

ejθ
N∏

k=1

zk − z

1 − zkz
, |zk| < 1. (24.1)

(Such functions are known as finite Blaschke products [18].) It is easy to see
that such functions map the exterior of the unit disk to the exterior of the
unit disk.

Let G(z) be such a function, let H(z) be the transfer function of a stable
filter, and consider H(G(z)). Since G(z) maps the exterior of the unit disk
into itself, if |z| > 1, then |G(z)| > 1. As H(z) corresponds to a stable filter,
it has no poles outside the unit disk. Thus, H(G(z)) cannot be infinite if z
is outside the unit disk. We find that H(G(z)) has no poles outside the unit
disk and is, consequently, the transfer function of a stable filter. Because G(z)
is a rational function of z, H(G(z)) is as well. As G(z) takes points on the
unit circle to points on the unit circle, the frequency response of the filter
whose transfer function is given by H(G(z)) is a “rearranged” version of the
frequency response of the original filter.

In the following sections, we make use of finite Blaschke products to re-
arrange the frequency response of a digital filter so that it becomes a different
type of digital filter. (A more complete set of filter transformation rules can
be found in [4].)

24.3 Converting a Low-pass Filter into a High-pass Filter

The first of the mappings—of the reorganizations—that we consider is the
mapping for which N = 1, z1 = 0, and ejθ = +1. That is, we consider the
mapping −z. It is easy to see that under this mapping, low frequencies—
which correspond to values of z near 1—go over to high frequencies—which
correspond to values of z near −1.

Consider the simple low-pass filter

Glp(z) = (1 − α)
z

z − α
, 0 < α < 1.

Under our mapping, this becomes

Ghp(z) = (1 − α)
z

z + α
, 0 < α < 1.

It is easy to show that this is indeed a high-pass filter. Using MATLAB r© and
its bodemag command, it is even easier to see that this is a high-pass filter.

Consider, for example, the filter for which α = 1/2 and Ts = 1ms. Giving
MATLAB the commands
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alpha = 0.5;
G = tf([(1 - alpha) 0],[1 alpha], 0.001)
bodemag(G)

causes MATLAB to produce the plot shown in Figure 24.1. This plot is clearly
the magnitude response of a high-pass filter.

Fig. 24.1. The magnitude response of a high-pass filter

24.4 Changing the Cut-off Frequency of an Existing
Low-pass Filter

We would like a function of the form (24.1) that maps the unit circle into
itself in such a way that the frequencies near zero are changed. We would like
to “stretch” that range.

It is not hard to see that N in (24.1) controls how many times the unit
circle is mapped onto itself. In our case, we want it to be mapped onto itself
once—we just want to stretch it a bit. Thus, we take N = 1. As we would
like to preserve the realness of the coefficients of the final transfer function,
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we require that ejθ = ±1 and z1 ∈ R. As |z1| < 1, this leaves us with the set
of mappings

Tz1(z) ≡ ± z1 − z

1 − z1z
, −1 < z1 < 1.

Note that T (1) = ±(−1). If we are looking to take low-pass filters into low-
pass filters, we must limit ourselves to filters of the form

Tz1(z) ≡ − z1 − z

1 − z1z
=

z − z1

1 − z1z
.

Such filters will change the cut-off frequency of a low-pass filter. To obtain a
high-pass filter with a specific cut-off frequency, one would compose the two
mappings −z and Tz1(z); one would make use of the mapping −Tz1(z).

Let us consider the action of the mappings

Ta(z) =
z − a

1 − az
, −1 < a < 1

in greater detail. We find that this mapping takes the point z = e2πjfTs to
the point

Ta(e2πjfTs) = e2πjfTs
1 − ae−2πjfTs

1 − ae2πjfTs
= e2πjfTs

1 − ae−2πjfTs

(
1 − ae−2πjfTs

) .

We know that our mappings take the unit circle into the unit circle. Thus,
the magnitude of this point must be one. The phase of the point is

� Ta(e2πjfTs) = 2πfTs + 2 tan−1

(
a sin(2πfTs)

1 − a cos(2πfTs)

)
.

We find that the mapping shifts lower frequencies to higher ones if a is positive,
and it shifts higher frequencies to lower ones if a is negative.

Let us consider an example. Suppose that we have a low-pass filter that
passes frequencies up to 1 Hz, and we would like a low-pass filter that passes
frequencies up to 10 Hz. We can make use of our transformation to design a
function that will transform our filter appropriately.

We are looking for an a for which an input of 10 Hz is converted into the
angle that is appropriate to 1 Hz. Thus, we must solve the equation

2π1Ts = 2π10Ts + 2 tan−1

(
a sin(2π10Ts)

1 − a cos(2π10Ts)

)
.

Let us take Ts = 1ms—let us consider a filter that samples 1,000 times per
second. We find that we are now looking for the solution of the equation

tan(−0.001 × 9π) =
a sin(2π0.01)

1 − a cos(2π0.01)
.
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Solving for a, we find that
a = −0.8182.

Thus, the mapping

Ta(z) =
z + 0.8182
1 + 0.8182z

can be used to convert a low-pass filter that takes 1,000 samples per sec-
ond, and whose cut-off frequency is 1 Hz, into a low-pass filter whose cut-off
frequency is 10 Hz.

24.5 Going from a Low-pass Filter to a Bandpass Filter

We have seen that the transforms Tz1(z),−1 < z1 < 1, take low-pass filters
into other low-pass filters by traversing the unit circle at different “rates.”
If one takes two such transforms and multiplies them, one causes the unit
circle to be traversed once as f goes from zero to 1/(2Ts). Such a transfor-
mation causes the low-pass filter to become a bandstop filter. If one uses the
transformation on a high-pass filter, the high-pass filter becomes a bandpass
filter.

Suppose that TLP(z) is the transfer function of a low-pass filter. We have
found that TLP(−Tα(z)Tβ(z)) is a bandpass filter. Suppose that TLP(z) is a
low-pass filter with cut-off frequency Fc, and that we let α = β = 0—we
choose Tα(z) = Tβ(z) = z. Let us characterize the filter given by

T (z) = TLP(−z2).

Substituting z = e2πjfTs in T (z), we find that

T (e2πjfTs) = TLP(−e4πjfTs) = TLP(ej2π(2f−Fs/2)Ts).

When f = 0, the frequency response of T (z) corresponds to the response of
the low-pass filter when f = −Fs/2. This will be very small—as seen in Figure
24.2. (Figure 24.2 is the magnitude response of a typical low-pass filter. In the
sample system, Fs = 100Hz, and we have plotted the magnitude response
from −1/(2Ts) to 1/(2Ts).) As f increases, the magnitude of the frequency
response increases. When f = Fs/4 − Fc/2, the frequency response of the
new filter corresponds to that of the low-pass filter at the (left-hand) cut-off
frequency. When f reaches f = Fs/4, the response corresponds to that of
the low-pass filter at f = 0. As f increases further, the response of the filter
starts to “fall off.” At f = Ts/4 + Fc/2, the filter has once again reached the
low-pass filter’s cut-off frequency. When f = 1/(2Ts), the response of the new
filter corresponds to that of the low-pass filter at f = Fs/2—and should, once
again, be very small. We find that the new filter is a (symmetric) bandpass
filter, and its cut-off frequencies are Fs/4 − Fc/2 and Fs/4 + Fc/2.
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Fig. 24.2. A typical low-pass filter. The far left of the plot is −Fs/2, and the far
right is Fs/2.

24.6 The Experiment

1. Let G(z) = (1 + z−1 + z−2)/3.
2. Use this low-pass prototype to design a high-pass, a bandstop, and a

bandpass filter.
3. Implement the filters using Simulink r©, and test their frequency responses.

Let Ts = 1ms.

24.7 The Report

Write a report that explains each step of the design process. Include the
Bode plots of the filters that were implemented. Finally, include some plots
of the input to, and output of, the system that show that the filters that were
designed really have the frequency response indicated by the Bode plots.
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24.8 Exercises

1. Show that the functions of (24.1) define unstable all-pass.
2. Show that if one replaces z of (24.1) by z−1, then the functions represent

stable all-pass filters.
3. Consider the analog prototype low-pass filter

G(s) =
1

s + 1
.

a) Using the bilinear transform, convert this into a digital low-pass filter.
(The resulting transfer function will depend on the sampling rate.)

b) Let Ts = 100μs. Using the low-pass to bandpass transformation z →
−z2, convert the low-pass digital filter into a bandpass digital filter.

c) Use MATLAB to plot the filter’s Bode plots.
4. Design a third-order high-pass Butterworth filter. Let Ts = 100μs, and let

the cut-off frequency of the filter be 4 kHz. Check that your filter meets
the specifications by using MATLAB. You will probably want to design
the filter by
a) Designing a continuous-time low-pass Butterworth filter with a cut-off

frequency of 1 Hz.
b) Modifying the filter to have a cut-off frequency that will lead to a

final design with a cut-off frequency of 4 kHz. (How does one find the
cut-off frequency of the low-pass filter?)

c) Converting the continuous-time filter into a discrete-time filter by
making use of the bilinear transform.

d) Converting the low-pass filter into a high-pass filter.
5. Show that the function

K(z) =
zk − z

1 − zzk

satisfies the equation K(K(z)) = z. Explain how this shows that the
function K(z) is a one-to-one and onto mapping of the complex plane
into itself. As G(z) = ejθK(z), conclude that G(z) is also a one-to-one
and onto mapping of the complex plane into itself.
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Implementing an IIR Digital Filter

Summary. We now understand how to “design” a recurrence relation that imple-
ments a digital filter. In this chapter, we consider how such equations should be
implemented. We discuss several methods of implementing digital filters, and we
find that due to numerical stability issues, it is best to implement high-order filters
by using biquads.

Keywords. direct form I realization, direct form II realization, numerical stability,

biquads.

25.1 Introduction

As the digital filters that are of interest to us can be described by transfer
functions that are rational functions of z−1, it is easy to show that the filters
can be described by equations of the form

yn =
M∑

m=1

bmyn−m +
L∑

l=0

alxn−l. (25.1)

Translating this into a transfer function, we find that the transfer function of
a system described by (25.1) is

T (z) =
Y (z)
X(z)

=
∑L

l=0 alz
−1

1 −∑M
m=1 bmz−m

.

There are many possible ways that one can actually calculate the sums of
(25.1). The simplest is to perform the calculations as given—in one fell swoop.
We consider this method in Section 25.2. In later sections, we examine more
interesting and effective techniques.
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25.2 The Direct Form I Realization

Making use of block diagram notation, and noting that a block whose transfer
functions is z−1 delays a sample by one sample period, we find that one way
of expressing the calculation that we would like to perform is to use the block
diagram of Figure 25.1. This realization of the calculation, which is the most
intuitive of all the realizations, is known as the direct form I realization of the
system. Note that in this realization we need to store L delayed samples of
the input and M delayed samples of the output. As we see in Section 25.3, by
simply rewriting the equations it is possible to do quite a bit better.

Fig. 25.1. The block diagram corresponding to the direct form I realization
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25.3 The Direct Form II Realization

By reconsidering the transfer function, it is possible to substantially reduce
the number of samples that need to be stored. Let us define the auxiliary
variable wn by the equation

W (z) =
1

1 −∑M
m=1 bmz−m

X(z),

and note that with this definition we find that Y (z) satisfies

Y (z) =
L∑

l=0

alz
−lW (z).

Both wn and yn depend on previous values of wn but not on previous values
of either yn or xn. The block diagram of a wn-based system is given in Figure
25.2. We find that the number of delays necessary here—and the number of
elements that must be stored here—is the larger of L and M . If these numbers
are roughly equal, then this method reduces the number of terms that must be
stored by nearly half. This realization of the calculation is known as the direct
form II realization. In Figure 25.2, the last of the al is given as aM , rather than
as aL. This is done because generally L ≤ M—because the transfer function
is generally proper. If L < M , we let

al = 0, l = L + 1, . . . M.

In this way, the figure correctly and simply represents the calculations that
we need to perform.

25.4 Trouble in Paradise

It turns out that both of the realizations we have seen so far are problem-
atic when M or L is even reasonably large. What is the problem? Generally
speaking, the coefficients of the polynomials in the transfer function are im-
plemented in some type of finite precision arithmetic. That means that the
coefficients used in the actual calculations are not precisely the coefficients
that were planned. Perturbing the coefficients of a polynomial perturbs the
location of the polynomial’s roots. The roots of the denominator are the poles
of the system, and if the poles leave the unit disk, then the system becomes
unstable.

Let us see how perturbing the coefficients of a polynomial affects the place-
ment of the roots of the polynomial. Consider a polynomial of the form

P (z) = 1 −
M∑

m=1

bmz−m.
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Fig. 25.2. The block diagram corresponding to the direct form II realization

The roots of the polynomial are the solutions of the equation P (z) = 0. Let
us consider a particular root, zk, as a function of the coefficient bi, and let us
emphasize this by writing the equation satisfied by the root as P (zk, bi) = 0.
Differentiating with respect to bi and making use of the chain rule, we find
that

d
dbi

P (zk, bi) =
∂

∂zk
P (zk, bi)

∂zk

∂bi
+

∂

∂bi
P (zk, bi)

∂bi

∂bi

= P ′(zk)
∂zk

∂bi
− z−i

k = 0

where

P ′(zk) =
d
dz

P (z)
∣∣∣∣
z=zk

.

Thus, we find that
∂zk

∂bi
=

z−i
k

P ′(zk)
.
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Note that P (z) can also be written in the form

P (z) =
M∏

m=1

(1 − z−1zm).

In this form, it is clear that

P ′(z) =
M∑

n=1

M∏

m=1,m �=n

(1 − z−1zm)(z−2zn).

Evaluating this sum at the root zk, we find that

P ′(zk) =
M∏

m=1,m �=k

(1 − z−1
k zm)z−1

k .

Combining all of our results, we find that, at a root,

∂zk

∂bi
=

z−i
k∏M

m=1,m �=k(1 − z−1
k zm)z−1

k

=
zM−i

k∏M
m=1,m �=k(zk − zm)

.

We find that if the roots of the polynomial are near one another, this value can
be quite large, and even a small change in the coefficients of the polynomial
can lead to a large change in the location of the polynomial’s roots.

25.5 The Solution: Biquads

We have seen that if one tries to implement a filter by using a single section—
as is done in both the realizations that we have seen—the implementation may
not perform as expected. In particular, if the poles or zeros of the filter are
clustered, then small inaccuracies in the coefficient values may be translated
into large inaccuracies in the pole or zero locations. As the poles of a stable
filter are all located inside the unit disk, a filter with many poles will have some
poles that are located near one another. This will cause the poles’ positions
to be very sensitive to small changes in the filter coefficients. This sensitivity
problem can cause a filter that should—theoretically—have been stable to be
unstable in practice.

One way to overcome this problem is to decompose the filter’s transfer
function into a product of transfer functions whose poles and zeros are well
separated. In that way inaccuracies in the values of the coefficients of the
individual filters will not affect the poles and zeros of the system too much.
The standard way to rewrite the system’s transfer function is as a product of
second-order sections—of sections whose numerator and denominator polyno-
mials are second order. Such sections are generally referred to as biquads. The
block diagram of a filter that has been decomposed into cascaded biquads is
given in Figure 25.3.
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Fig. 25.3. The block diagram corresponding to the biquad realization. Here, the
direct form II realization is used.

25.6 Exercises

1. Determine the recurrence relation satisfied by xn and yn of Figure 25.4.

Fig. 25.4. A block diagram of a single biquad. Here, the direct form I realization
is used.

2. Recall that a polynomial with real coefficients can always be factored into
first- and second-order polynomials with real coefficients. Use this fact to
explain why high-order filters are generally decomposed into second-order
sections, and not first-order sections.

3. Consider the polynomial P (z) = z2 − 2 cos(θ)z + 1.
a) Show that when |θ| << 1, the polynomial has two nearly identical

roots.
b) Show that when |θ − π/2| << 1, the roots are well separated.
c) Show that when θ is near zero, small changes in cos(θ) lead to rela-

tively large changes in the location of the roots of the polynomial.
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d) Finally, show that when θ is near π/2, small changes in cos(θ) do not
affect the location of the roots as much as they did in the previous
case.

4. a) Design a fourth-order continuous-time Butterworth low-pass filter
with a cut-off frequency of ωc = 10 rad s−1.

b) Using the bilinear transform, transform this filter into a digital filter
for which Ts = 0.001 s.

c) Find the recurrence relation satisfied by the filter’s input and output.
d) Give a schematic drawing (with all the filter coefficients) of the filter

implemented as a cascade of two biquads realized using the direct form
II realization.
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IIR Filter Design Using MATLAB

Summary. Though it is possible to use the beautiful and interesting methods of
days gone by to design analog or IIR digital filters, it is not strictly necessary.
MATLAB r© has two different “levels” of filter-design tools. It has “regular” com-
mands for filter design, and it has a graphical user interface (GUI) based filter-design
tool as well. We discuss both options in the following sections.

Keywords. MATLAB, butter, fdatool.

26.1 Individual Commands

MATLAB’s suite of filter-design commands includes commands to design But-
terworth, Chebyshev, and elliptic filters. As is generally the case when using
MATLAB, one can find out how things work by using the MATLAB help
command.

We consider the simplest command—butter. To design an Nth-order dig-
ital filter with cut-off frequency ωn, one writes [b a] = butter(N, Wn). The
arrays b and a are the coefficients of the polynomials in the filter’s numerator
and denominator, respectively.

When designing a digital filter, all frequencies can be considered as
being relative to the sampling frequency. That is, if one is sampling at
100 samples s−1 and one’s cut-off frequency is 10 Hz, one can intelligently say
that one’s cut-off frequency is one-tenth the sampling frequency. In fact, if
one “speeds up” the sampling rate to 1,000 samples s−1 and one uses the same
filter—a filter that uses the same formula in its implementation—the cut-off
frequency will now be one-tenth of the new sampling rate. That is, the cut-off
frequency will be 100 Hz. (See Exercise 2.)

When using the butter command, the frequency is given relative to the
Nyquist frequency—relative to half the sampling frequency. The number Wn
must be between 0 and 1. The cut-off frequency will be Wn times the Nyquist
frequency of the filter that is being implemented.
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Let us consider a simple example. Let us design and examine a Butterworth
low-pass filter whose sampling frequency is 200 samples s−1 and whose cut-off
frequency is 20 Hz. As the Nyquist frequency is 100 Hz, we find that Wn =
20/100 = 0.2. Thus, our first step is to use the butter command as follows.
(Both the command and MATLAB’s response are given.)

>> [b a] = butter(3, 0.2)

b =

0.0181 0.0543 0.0543 0.0181

a =

1.0000 -1.7600 1.1829 -0.2781

In order to examine this design, we implement it as a discrete-time transfer
function. To do this, we use the tf command. This command takes a nu-
merator, a denominator, and a sample time and returns a “transfer function
object.” Our command and MATLAB’s response follow.

>> tf(b, a, 0.005)

Transfer function:
0.0181 z^3 + 0.0543 z^2 + 0.0543 z + 0.0181
-------------------------------------------

z^3 - 1.76 z^2 + 1.183 z - 0.2781

Sampling time: 0.005

Now one can use all of MATLAB’s standard commands to explore how this
filter behaves. One might use bode to see the filter’s Bode plots, or step
to examine its step response. From the transfer function it is also easy to
construct the recurrence relation that defines the digital filter.

In our case, for example, after dividing the numerator and the denominator
by z3, we find that

Y (z)
X(z)

=
0.0181 + 0.0543z−1 + 0.0543z−2 + 0.0181z3

1 − 1.76z−1 + 1.183z−2 + 0.2781z−3

⇔ yk = 1.76yk−1 − 1.183yk−2 + 0.2781yk−3

+0.0181xk + 0.0543xk−1 + 0.0543xk−2 + 0.0181xk−3.
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26.2 The Experiment: Part I

Use the built-in MATLAB commands to design a second-order Butterworth
low-pass filter. Design the filter to have a cut-off frequency of 270 Hz when the
sampling rate is 2,700 samples s−1. Implement the filter using the ADuC841.
Measure the frequency response of the filter at several frequencies and compare
the results with those predicted by the theory.

When implementing the filter, consider carefully what data type(s) to use
in your C program. Make sure that, on the one hand, you have enough bits
for your needs. On the other hand, make sure that you do not make the
microprocessor’s job too hard. Floating point arithmetic is rather hard on
simple microprocessors like the ADuC841.

26.3 Fully Automatic Filter Design

In addition to the “discrete filter-design commands,” MATLAB also provides
a “filter design and analysis tool.” This tool is invoked by typing fdatool at
the MATLAB command line. This tool will design most any filter. It asks for
your specifications and returns the Bode plots of the filter it designs. This
tool has many display and implementation options. Play with it a little bit to
see what it can do!

26.4 The Experiment: Part II

Use fdatool to design a third-order low-pass elliptic filter. Let the cut-off
frequency of the filter be 270 Hz and the sampling frequency be 2,700 samples
per second. Let the passband ripple—the extent to which the magnitude is
allowed to vary in the passband—be 1 dB, and make the magnitude in the
stopband at least 30 dB below the passband magnitude.

Note that MATLAB uses second-order sections—biquads—in its default
filter implementation. For a third-order filter, one probably does not need to
use this type of implementation. To change the implementation type, right-
click on the “Current Filter Information” box, and click on “convert to single
section.” In order to see the filter coefficients, either click on the button labeled
“[b/a]” in the toolbar or go to the File tab, click on “Export...,” and tell it
to export as coefficients. After this procedure, you will find variables in your
MATLAB workspace that contain the filter coefficients.

Implement the filter using the ADuC841. Measure the frequency response
of the filter at several frequencies, and compare the results with those pre-
dicted by the theory.
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26.5 Exercises

1. a) Use the fdatool to design a sixth-order elliptic low-pass filter. Let the
cut-off frequency be 1 kHz and the sampling frequency be 10 kHz. For
the elliptic filter, let the passband attenuation, Apass, be 1 dB and
the stopband attenuation, Astop, be 30 dB.

b) Compare the filter of the preceding section with a Butterworth filter
with the same cut-off frequency and sampling rate.

c) Which filter has a narrower transition region?
d) Which filter has a smoother frequency response?

2. Explain why doubling the sampling rate of a digital filter that is described
by a recurrence relation doubles the values of all of a filter’s frequency-
related parameters. You may want to consider the filter’s frequency re-
sponse for a sampling rate of Ts and for a sampling rate of Ts/2.



27

Group Delay and Phase Delay in Filters

Summary. In this chapter, we explore the way in which a filter’s output is delayed
with respect to its input. We show that if the filter’s phase is not linear, then the
filter delays signals with different carrier frequencies by different amounts.

Keywords. group delay, phase delay, bandpass signals, carrier frequency.

27.1 Group and Phase Delay in Continuous-time Filters

Suppose that one has a narrow-band bandpass signal, y(t). That is, suppose
that y(t) can be written as

y(t) = e2πjFctx(t)

where X(f) = 0 for all |f | > B, B << Fc, and Fc is the signal’s carrier
frequency.

Consider the Fourier transform representation of x(t)

x(t) =
∫ B

−B

e2πjftX(f) df

=
∫ B

−B

|X(f)|ej � X(f)e2πjft df.

We find that x(t) is composed of sinusoids of the form

|X(f)|ej � X(f)e2πjft, |f | ≤ B.

Similarly, we find that y(t) is composed of sinusoids of the form

|X(f)|ej � X(f)e2πj(f+Fc)t, |f | ≤ B.
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When the components of the function y(t) pass through a filter whose fre-
quency response is H(f), then the components of the resulting function, which
we call z(t), are

|H(Fc + f)|ej � H(Fc+f)|X(f)|ej � X(f)e2πj(f+Fc)t, |f | ≤ B.

Let us define the function ΘH(f) ≡ � H(f). For relatively small f we can
approximate ΘH(Fc + f) by ΘH(Fc) + Θ′

H(Fc)f . Also, assuming that the
magnitude of the filter response does not change much for small f , we can
approximate |H(Fc + f)| by |H(Fc)|. (This “0th-order” approximation is rea-
sonable, because a small enough error in the magnitude can only produce a
small error in the final estimate of the signal.) We approximate the constituent
components of z(t) by

|H(Fc)|ej(ΘH(Fc)+Θ′
H(Fc)f)|X(f)|ej � X(f)e2πj(f+Fc)t, |f | ≤ B.

Rewriting this, we find that the constituent components of z(t) are

|H(Fc)|ejΘH(Fc)e2πjFct|X(f)|ej � X(f)ejΘ′
H(Fc)fe2πjft, |f | ≤ B.

This, in turn, can be written as

|H(Fc)|e2πjFc(t+ΘH(Fc)/(2πFc))|X(f)|ej � X(f)e2πjf(t+Θ′
H(Fc)/(2π)), |f | ≤ B.

This, however, shows that

z(t) ≈
∫ B

−B

|H(Fc)|e2πjFc(t+ΘH(Fc)/(2πFc))|X(f)|ej � X(f)e2πjf(t+Θ′
H(Fc)/(2π)) df

= |H(Fc)|e2πjFc(t+ΘH(Fc)/(2πFc))

∫ B

−B

X(f)e2πjf(t+Θ′
H(Fc)/(2π)) df

= |H(Fc)|e2πjFc(t+ΘH(Fc)/(2πFc))x(t + Θ′
H(Fc)/(2π)).

We find that the carrier has been delayed by

phase delay ≡ −ΘH(Fc)/(2πFc), (27.1)

and the envelope, the signal x(t), has been delayed by

group delay ≡ −Θ′
H(Fc)/(2π). (27.2)

The group delay is constant precisely when ΘH(f) is a linear function of
the frequency. One example of a filter with constant group delay is a symmetric
FIR filter. See Chapter 28 for more details about this important class of filters.
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27.2 A Simple Example

Let us consider the first-order filter whose transfer function is

H(s) =
1

s + 1

and whose frequency response is

H(2πjf) =
1

2πjf + 1
.

Clearly,
ΘH(f) = − tan−1(2πf).

We find that the group delay is

group delay = −Θ′(f)
2π

=
1

(2πf)2 + 1
.

We find that the group delay is largest when f = 0; at that point, the group
delay is 1 s.

If we would like to “see” this delay, we must pass a signal whose carrier
frequency is 0 Hz—an unmodulated signal—through the filter. We must be
careful to see to it that the signal’s energy is contained in frequencies for
which the phase response of the filter is reasonably linear. The Bode plots
corresponding to H(2πjf) are given in Figure 27.1. We note that the phase
response is rather linear at frequencies less than, or equal to, 0.2 Hz. Thus, we
need a very low-frequency signal. We make use of the signal

x(t) =
sin(0.2π(t − 10))

0.2π(t − 10)
.

The output of the filter (as generated by Simulink r© and displayed by
MATLAB r©) is given in Figure 27.2. Note that the output is delayed from
the input by 1 s—as predicted.

27.3 A MATLAB Experiment

1. Write a short MATLAB function to calculate the group delay and gain
associated with a transfer function. The function should accept a transfer
function object (created using the tf command) and a frequency. The
function should return the gain and group delay at the frequency. (You
may find that when used properly, the MATLAB command bode is quite
helpful here.)
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Fig. 27.1. The Bode plots of the filter under consideration. Note that the phase
response is rather linear for frequencies below 0.2 Hz.

2. Create a Simulink model in which the group delay caused by a system can
be observed. You may want to use a system whose transfer function is

G(s) =
ω0ε

s2 + εs + ω2
0

.

Use a modulated waveform as the system’s input, and explain how one
sees the effects of the group delay in the system’s output.

3. Using the results of the program written in the first section, explain the
results of the second section.

27.4 Group Delay in Discrete-time Systems

There is no real difference between the results for discrete-time and continuous-
time systems. The only difference is that H(f) must be defined as the fre-
quency response of the discrete-time system. Thus, if the transfer function of
the system is H(z), then
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The input to the filter.
The output of the filter

Fig. 27.2. The input to the filter, and the output of the filter. The output is delayed
from the input by about 1 s.

ΘH(f) ≡ � H(e2πjfTs)

where Ts is the sampling period.

27.5 Exercises

1. a) Calculate the group delay function that corresponds to the filter whose
transfer function is

H(s) =
s/100 + 1
s/1000 + 1

.

b) For which frequencies is the group delay negative?
2. Calculate the group delay function that corresponds to the filter whose

transfer function is
H(s) =

ω0ε

s2 + 2εs + ω2
0

.

Remember to “mind your Ps and Qs” when calculating angles.
3. Calculate the group delay function that corresponds to the filter whose

transfer function is
H(z) =

Tsz

z − 1
.

You need only consider the frequencies 0 < f < 1/(2Ts). Remember to
“mind your Ps and Qs” when calculating angles.
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Design of FIR Filters

Summary. In Chapter 22, we considered two simple finite impulse response (FIR)
filters. We have not yet considered how one goes about designing a generic finite
impulse response filter. We now remedy that lack.

Keywords. FIR filter design, symmetric FIR filter, windows, Fourier series, group

delay.

28.1 FIR Filter Design

One way of designing a filter is to take the desired frequency response and
find the precise set of coefficients that gives one such a filter. As we will see,
the coefficients that correspond to the most commonly desired filters cannot
be implemented “as is.”

Suppose that one chooses to sample one’s input Ts times per second and
that one would like a filter H(z) whose frequency response is H̃(f) (between
f = −Fs/2 and f = Fs/2). That is, one would like

H(e2πjfTs) = H̃(f).

Generally speaking, we start by requiring that H̃(f) be real and even.
(These properties guarantee that the impulse response of the filer is real and
even. See Exercise 3.) As H̃(f) is supposed to be the frequency response of a
discrete-time filter, it must be periodic with period Fs = 1/Ts (as we saw in
Section 18.10).

Assuming that

H(z) =
∞∑

m=−∞
hmz−m,

we find that we are looking for coefficients, hm, that satisfy
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∞∑

m=−∞
hme−2πjmfTs = H̃(f).

The hm are essentially the coefficients of the Fourier series associated with
H̃(f). We find that

hm =
1
Fs

∫ Fs/2

−Fs/2

e2πjmfTsH̃(f) df.

As we know that the hm are even in m, we know that the filter we are
designing is not going to be a causal filter—its response to a delta function
precedes the arrival of the delta function. We deal with this problem shortly.

Let us consider a simple design example. Suppose that one would like
Ts = 1ms, and one would like a filter that passes all frequencies up to 100Hz.
That is, H̃(f) = 1 for |f | ≤ 100, and it is zero otherwise. We find that for
m �= 0,

hm = 0.001
∫ 500

−500

e2πjmf/1000H̃(f) df

= 0.001
∫ 100

−100

e2πjmf/1000 df

=
0.001

2πjm/1,000

(
e2πjm/10 − e−2πjm/10

)

=
sin(2πm/10)

πm
.

When m = 0, a simple calculation shows that h0 = 0.2.
We find that the coefficients are real and even. Additionally, they extend

from m = −∞ to ∞. Clearly, they do not correspond to a finite impulse
response filter. In order to transform our filter into a finite impulse response
filter, we set all the filter coefficients for which |m| > M to zero. That is, we
consider the approximation to the ideal filter given by

G(z) =
M∑

m=−M

hmz−m.

What effect does “zeroing” all the coefficients that affect samples far from
the current one have? What we have just done is to take a set of filter coeffi-
cients and multiply them by a sequence that is one for |m| ≤ M and that is
zero elsewhere. Defining the window sequence wm = 1 for |m| ≤ M , and zero
otherwise, we find that the coefficients of the new filter are hmwm.

It is not hard to see that multiplying the coefficients in the “time” do-
main is equivalent to convolution in the frequency domain. Consider two Z-
transforms, H(z) and G(z), having regions of convergence that include the
unit circle. Let us consider the convolution of H(e2πjfTs) with G(e2πjfTs)
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H(e2πjfTs) ∗ G(e2πjfTs) ≡
∫ Fs/2

−Fs/2

H(e2πjφTs)G(e2πj(f−φ)Ts) dφ.

A quick calculation shows that

H(e2πjfTs) ∗ G(e2πjfTs) =
∫ Fs/2

−Fs/2

H(e2πjφTs)G(e2πj(f−φ)Ts) dφ

=
∫ Fs/2

−Fs/2

( ∞∑

n=−∞
e−2πjn(f−φ)Tsgn

)
×

( ∞∑

m=−∞
e−2πjmφTshm

)
dφ

=
∞∑

n=−∞

∞∑

m=−∞

∫ Fs/2

−Fs/2

e−2πjn(f−φ)Tsgne−2πjmφTshm dφ

=
∞∑

n=−∞
e−2πjnfTsgn ×
∞∑

m=−∞

∫ Fs/2

−Fs/2

e−2πj(m−n)φTshmgn dφ

=
∞∑

n=−∞
e−2πjnfTsgn

∞∑

m=−∞
Fsδm−nhm

= Fs

∞∑

n=−∞
e−2πjnfTsgnhn.

This is Fs times the frequency response of the system whose coefficients are
hngn.

In order to determine the effect of the windowing procedure, we must find
the function W (e2πjfTs) associated with the coefficients wm. By definition
(and after some calculation), we find that

W (e2πjfTs) =
∞∑

k=−∞
wke−2πjfkTs

=
M∑

k=−M

e−2πjfkTs

= e2πjMTs

2M∑

k=0

e−2πjfkTs

= e2πjMTs
1 − e−2πjf(2M+1)Ts

1 − e−2πjfTs

=
sin(π(2M + 1)fTs)

sin(πfTs)
.
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This function is very similar to the sinc function. As M becomes larger, the
function tends to Ts times a periodic delta function (as seen in Section 1.2).

When one convolves H̃(f) with W (e2πjfTs), one finds that the resulting
function is a smeared version of H̃(f) that has sidelobes that surround the
areas in which the filter response is supposed to be one. As in the case of
the calculation of the DFT, the sidelobes are larger when W (e2πjfTs) itself
has large sidelobes—when it does not decay quickly away from f = 0. This,
it can be shown, happens when wm has large abrupt changes. (And this is
precisely what we saw in Chapter 5 when we considered the effect that a
window has on the DFT of a sequence.) Thus, just as in the case of the
DFT, it can be advantageous to use a window function that does not change
too abruptly—for example, a raised-cosine (Hann) window. When we used
windows to help remove spurious high-frequency terms from the DFT, we
found that window functions generally widen the peaks one should see in
the DFT. In the case of FIR filter design, window functions generally make
the transition from passband to stopband less sharp—and that is a problem
caused by using window functions.

In Figure 28.1, MATLAB r© code that compares the frequency response of
the filter designed in Section 28.1 with the frequency response of a filter that
uses a windowed version of the same coefficients is given. The figure generated
by the code is given in Figure 28.2. We find that the filter implemented without
windowing the coefficients has a frequency response with rather pronounced
ripple. On the other hand, the frequency response after windowing has a wider
transition region.

28.2 Symmetric FIR Filters

If we desire to build a filter that selects certain frequency ranges and that has
a constant group delay, then the symmetric FIR filter is often a good solution.
A symmetric FIR filter is most reasonably defined as an FIR filter for which

h−n = hn.

We have seen that if the frequency response we are trying to achieve, H̃(f),
is real and even, then hn will be real and even as well. Let us consider the
transfer function of a symmetric FIR filter. We find that

H(z) =
M∑

m=−M

hmz−m.

Substituting z = e2πjfTs , we find that the frequency response of the filter is

H(e2πjfTs) =
M∑

m=−M

hm(e2πjfTs)−m
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M = 100;

% 2M+1 gives the number of taps in the FIR filter.

Ts = 0.001;

% Ts is the sample time.

m = [-M:M]

h = (2 / 10) * sinc(2 * m / 10);

% h contains the filter coefficients.

denom = [zeros([1 M]) 1 zeros([1 M])];

H = tf(h, denom, Ts)

% The filter thus defined is a non-causal symmeteric filter.

figure(1)

bodemag(H,’:k’,{20,2000})

hwin = h .* hann(2*M+1)’;

% Here we window the filter coefficients.

Hwin = tf(hwin, denom, Ts)

% This defines the new filter.

hold on

bodemag(Hwin,’k’,{20,2000})

hold off

legend(’unwindowed’,’windowed’)

print -djpeg win_com.jpg

% This command generates and saves a JPEG version of the plot.

Fig. 28.1. The MATLAB code used to compare an FIR filter whose coefficient
values were not windowed with one whose coefficient values were windowed

=
M∑

m=−M

hme−2πjmfTs

= h0 + h1(e−2πjfTs + e2πjfTs) + · · · + hM (e−2πjMfTs + e2πjMfTs)
= h0 + h12 cos(2πfTS) + · · · + hM2 cos(2πMfTs).

As long as the hn are real, the frequency response is a real number, and its
phase is constant (in intervals). The problem is that this filter is not causal.

The solution is to add a delay to the filter. Let us redefine a symmetric
FIR filter as a causal N + 1-tap (coefficient) filter for which hN−i = hi. If we
delay the output of the filter by M samples, then the filter’s transfer function
is

K(z) =
2M∑

m=0

hm−Mz−m.

The filter’s frequency response is

K(e2πjfTs) =
2M∑

m=0

hm−M (e2πjfTs)−m

= e−2MπjfTsH(e2πjfTs)
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Fig. 28.2. A comparison of the frequency responses of the FIR filter implemented
without windowing and the FIR filter implemented with windowing. Note that the
windowed coefficients lead to a filter whose frequency response has less ripple away
from the transition region, but the unwindowed coefficients lead to a filter with a
sharper transition from passband to stopband.

= e−2MπjfTs(real number).

Assuming that the real number is positive, which will generally be the case in
the regions that are of interest to us, we find that

� H(e2πjfTs) = −2MπfTs.

We find that the group delay of such a filter is

group delay = MTs.

The group delay is constant and is exactly M sampling periods long. The fact
that the group delay is a constant across all frequencies is the reason we use
symmetric FIR filters.

Returning to our 100 Hz filter, we find that to implement it as a causal
filter, we must define the filter’s transfer function as
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H(z) =
2M∑

m=0

hm−Mz−m.

This filter is causal and, other than a linearly varying phase, has the desired
frequency response.

28.3 A Comparison of FIR and IIR Filters

Were it not for the fact that both FIR and IIR filters have their places, one
or the other type of discrete-time filter would have been forgotten long ago.
FIR filters have two major advantages

1. Symmetric FIR filters have linear phase—and hence the group delay is
the same at all frequencies.

2. FIR filters are always stable.

IIR filters, though their phase response is not ideal and they can be un-
stable have one major advantage: They generally require many fewer taps in
their implementation. When using a resource-poor microprocessor, one may
find that IIR filters are appropriate. For an interesting discussion that con-
siders many of these points, the reader may wish to consult [16].

28.4 The Experiment

Let us use MATLAB r© to start experimenting with FIR filter design. Use
the MATLAB command fdatool (and the GUI it opens for you) to design a
bandpass filter with 99 taps whose passband extends from 25 to 35 Hz. Make
the sampling frequency of the filter 200 samples s−1.

When you set up fdatool, make sure to select a bandpass filter, make
sure that the filter is an FIR filter, and make sure that the design method
you choose is “Window.” Use several different windows in your design, and
print out the frequency response you achieve with each window. Also, analyze
the impulse response of the filters. Explain why you see the types of impulse
responses you obtain.

Finally, design a nine- or ten-tap bandpass filter that samples at a rate of
1,350 samples s−1 and that passes all frequencies in the range extending from
135 to 270 Hz. Window the filter coefficients to keep the frequency response
of the filter near zero in the regions where the frequency response is supposed
to be zero. Implement the filter on the ADuC841 using a C program, and
examine the properties of the filter that has been implemented.
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28.5 Exercises

1. Explain what “least squares” FIR filter design is. Feel free to use the
library, the web, or any of the various MATLAB “help” features to acquire
the information necessary to answer this question.

2. a) Design a 201-tap symmetric high-pass FIR filter for which
• Ts = 500μs, and
• the cut-off frequency is 400 Hz.

b) Have MATLAB calculate and plot the Bode plots corresponding to
this filter.

c) Now, multiply the coefficients by a Hanning window of the appropriate
size, and have MATLAB plot the Bode plots of the new filter. How
do the new plots compare to those of the unwindowed filter?

3. Please show that for any real even function, the coefficients, bk, are real
and satisfy bk = b−k—they are symmetric in k. You may wish to proceed
by showing that for any real function, b−k = bk. Then, you may wish to
show that for any even function, bk = b−k.
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Implementing a Hilbert Filter

Summary. Though many of the filters that we use are frequency-selective—they
pick out frequencies that are for one reason or another important to us—not all
filters are of this type. Here, we consider the Hilbert filter—an all-pass filter.

Keywords. Hilbert filter, all-pass filter, Fourier series.

29.1 An Introduction to the Hilbert Filter

The frequency response desired of an analog Hilbert filter, H(f), is

H(f) =

⎧
⎨

⎩

j, f < 0
0, f = 0

−j, f > 0
.

When implementing the filter digitally, the desired frequency response is

H̃(Ω) =

⎧
⎨

⎩

j, −π < Ω < 0
0, Ω = 0

−j, 0 < Ω < π

where Ω = 2πfTs. As this is a discrete-time filter, we know that if {hk} are
the filter coefficients, then the filter’s frequency response is

frequency response =
∞∑

k=−∞
hke−jΩk.

We choose {hk} such that the frequency response of the filter equals the
desired frequency response:

∞∑

k=−∞
hke−jΩk = H̃(Ω).
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As expected, we find that the hk are (essentially) the Fourier coefficients of
H̃(Ω).

Clearly,

hk =
1
2π

∫ π

−π

H(Ω)ejΩk dΩ

=
1
π

∫ π

0

sin(Ωk) dΩ

=
1
π

cos(0) − cos(πk)
k

=
{

2
πk k odd
0 k even .

Thus, the transfer function of the filter is

H(z) =
∞∑

k=−∞
hkz−k =

2
π

∞∑

k=−∞

1
2k + 1

z−(2k+1). (29.1)

29.2 Problems and Solutions

As seen in Chapter 28, there are two problems associated with implementing
this filter

1. the filter is not causal, and
2. the impulse response is infinite.

We take care of these problems by truncating the response and delaying it. We
approximate the Hilbert filter by considering a filter whose transfer function
is

HN (z) =
2
π

z−(2N−1)
N−1∑

k=−N

1
2k + 1

z−(2k+1), N ≥ 1.

29.3 The Experiment

Implement the filter whose transfer function is H3(z) on the ADuC841. Use
a sampling rate of 2,700 samples s−1. In addition to outputting the output of
the filter via DAC0, use DAC1 to output the input to the filter, but delay the
input by five samples. Compare the output of the two DACs to see the −90o

phase shift introduced by the filter. Print out several oscilloscope traces, and
include them with your laboratory report.
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29.4 Exercises

1. Use MATLAB to show that when N = 5, the filter in Section 29.2 provides
us with the phase response that we desired (except for a linear term added
by the “block” that delays the filter’s output by 2 × 5 − 1 samples).

2. Discuss the Gibbs phenomenon, and show why it implies that approxima-
tions of the type we are making will never tend uniformly to the magnitude
response we want. Show that there will always be points of the magnitude
response that differ from the desired value by several percent.

3. Is the filter given by (29.1) stable? Explain!



30

The Goertzel Algorithm

Summary. We have seen that the FFT allows one to calculate the DFT of an
N -term sequence in O(N ln(N)) steps. As calculating a single element of the DFT
requires O(N) steps, it is clear that when one does not need too many elements of the
DFT, one is best off calculating individual elements, and not the entire sequence. In
this chapter, we present a simple algorithm—the Goertzel algorithm—for calculating
individual elements of the DFT.

Keywords. Goertzel algorithm, DFT, second-order filter.

30.1 Introduction

Consider the definition of the DFT

Ym = DFT({yk})(m) ≡
N−1∑

k=0

e−2πjmk/Nyk.

The calculation of any given coefficient, Ym, takes O(N) steps. Thus, if one
only needs a few coefficients (fewer than O(ln(N)) coefficients), then it is
best to calculate the coefficients and not bother with the “more efficient”
FFT algorithm (which calculates all of the Fourier coefficients). The Goertzel
algorithm1 is a simple way of calculating an individual Fourier coefficient. It
turns calculating a Fourier coefficient into implementing a second-order filter
and using that filter for a fixed number of steps. The Goertzel algorithm is
somewhat more efficient than a “brute force” implementation of the DFT.

30.2 First-order Filters

Consider the solution of the equation
1 Named after its discoverer, Gerald Goertzel. The algorithm was published in 1958

[11].
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rn = αrn−1 + xn. (30.1)

This corresponds to calculating the response of the filter whose transfer func-
tion is

R(z)
X(z)

=
z

z − α
.

Making use of the variation of parameters idea [17], we guess that the
solution of (30.1) is of the form

rn = αnzn.

We find that we must produce a zn for which

rn = αnzn

= αrn−1 + xn

= α(αn−1zn−1) + xn

= α(αn−1(zn + (zn−1 − zn)) + xn

= αnzn + αn(zn−1 − zn) + xn.

In order for equality to hold, we find that

zn = zn−1 + α−nxn. (30.2)

Assuming that rn = xn = 0 for n < 0, (30.2) implies that

zn =
n∑

k=0

α−kxk.

Finally, we find that

rn = αnzn =
n∑

k=0

αn−kxk. (30.3)

(For another way of arriving at this result, see Exercise 3.)

30.3 The DFT as the Output of a Filter

Let us consider the definition of the DFT again. We find that

Ym =
N−1∑

k=0

e−2πjmk/Nyk

=
N−1∑

k=0

(e2πjm/N )N (e−2πjm/N )kyk.
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=
N−1∑

k=0

(e2πjm/N )N−kyk

= e2πjm/N
N−1∑

k=0

(e2πjm/N )N−1−kyk.

We find that Ym is the output of a first-order filter at “time” N − 1.
Let us examine the relevant filter. We find that the filter’s transfer function

is

T (z) =
ze2πjm/N

z − e2πjm/N
.

This transfer function can be rewritten as

T (z) =
z(ze2πjm/N − 1)

z2 − 2z cos(2πm/N) + 1
.

This transfer function can be considered the product of two transfer functions,
T1(z)T2(z), where

T1(z) =
1

1 − 2z−1 cos(2πm/N) + z−2
, and T2(z) = e2πjm/N − z−1.

We find that the first transfer function has real coefficients, and the second
corresponds to a finite impulse response filter. As the output of the second
filter is needed only when k = N − 1, the FIR filter need not be implemented
except at that last step.

We can calculate Ym by implementing the filter

rn = 2rn−1 cos(2πm/N) − rn−2

and continuing the calculation until n = N − 1. At that point, we calcu-
late Ym = e2πjm/NrN−1 − rN−2. This algorithm is known as the Goertzel
algorithm.

30.4 Comparing the Two Methods

To what extent is the Goertzel algorithm more efficient than the direct calcu-
lation of the value of Ym,

Ym =
N−1∑

k=0

e−2πjmk/Nyk?

If one performs a brute force calculation of Ym, one must multiply e−2πjmk/N

by yk for N values of k. As the complex exponential is essentially a pair of real
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numbers, this requires 2N real multiplications. Additionally, the sum requires
that 2(N − 1) real sums be calculated. When using the Goertzel algorithm,
the recurrence relation requires two real additions and one real multiplication
at each step. The FIR filter that is used in the final stage requires two real
multiplications and one addition. In sum, the Goertzel algorithm requires
N +2 real multiplications and 2N +1 real additions. We find that the Goertzel
algorithm is somewhat more efficient than the brute force calculation.

30.5 The Experiment

Implement the Goertzel algorithm using Simulink r©. Calculate one of the
elements of the FFT of a sequence that is 16 elements long.

1. Implement the filter T1(z). As its coefficients are all real, this is not a
problem.

2. Implement filter T2(z) as two separate filters. One should produce the real
part of the FFT, and the second should produce the imaginary part.

3. Let the input to the filters come from the workspace, and let the output
of each of the filters go to the workspace. (Look at the Simulink sources
and sinks to find the appropriate blocks.)

4. Try out the final set of filters with a variety of inputs. Note the size of the
output of the filter T1(z).

5. In your report, explain why implementing the Goertzel algorithm using a
microprocessor might be challenging.

30.6 Exercises

1. Discuss the stability of filter T1(z).
2. Why are we able to use T1(z) even though it is a “problematic” filter?

Explain your answer clearly.
3. Show that (30.3) describes the relation between xn and rn by using the

fact that the operations being described are causal, by assuming that
xn = 0 when n < 0, and by making use of the Z-transform.
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Z-transform 117
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