
Tales from a lean programmer. 

An overview of direct memory access 
April 27, 2014 by David 3 Comments 

Introduction 

Direct memory access (DMA) is conceptually easy, but without experience in hardware design or driver development 

it can be cumbersome to understand. In this blog post I will explain what DMA is and how it evolved during the last 

decades. My goal is to make it comprehensible especially for people without experience in hardware design or driver 

development. 

DMA allows computer devices of certain hardware sub-systems to directly access system memory and other 

device’s memory independently of the CPU. This enables the CPU to keep on working concurrently on other task 

while long lasting memory operations take place; considerably boosting overall system performance. DMA is used 

by different hardware like graphics cards, sound cards, network cards and disk drive controllers. DMA is rather a 

concept than a specific technology. There is no specification which describes in detail how DMA transfers work. 

Even on the contrary, the concept of directly accessing memory without CPU interaction is employed in many 

different hardware sub-systems in today’s computers. The most typical application is communicating with peripheral 

devices plugged into a bus system like ATA, SATA, PCI or PCI Express. Beyond that, DMA transfers are used for 

intra-core communication in micro processors and even to copy data from the memory of one computer into the 

memory of another computer over the network via remote DMA (don’t mix up this technology with NVIDIA’s 

new GPUDirect RDMA feature). 

To give a concrete example, imagine you’re playing an open world computer game which loads new game assets on 

demand from your hard disk. Large amounts of game data must be copied over from hard disk into system RAM. 

Without DMA the CPU would be actively involved in each and every memory transfer operation. Consequently, less 

computing time would be left for other game play related tasks like AI or physics. In times of multi-core processors 

this seems less like a problem. However, as data volumes and work load sizes are ever growing, off-loading large 

memory transfer operations from the CPU is also today absolutely essential in order to achieve high system 

performance. 

How DMA evolved over time 

In my experience many software people think that DMA nowadays still works as it did in the old days. I guess this is 

because it’s the more intuitive way to think about DMA. Back then, extension devices did not actively take part in 

DMA transfers, but there was a DMA controller (e.g. the Intel 8237, first used in the IBM PC in 1981) which enabled 

DMA transfers between system memory and device I/O over the good old Industrial Standard Architecture (ISA) bus. 

The DMA controller could be programmed by the CPU to perform a number of memory transfers on behalf of the 

CPU. This way of accomplishing DMA transfers is also known as third party DMA. At that time the system bus was 

identical to the ISA expansion bus. To account for reduced bus performance in situations where CPU and DMA 

controller needed to access the bus simultaneously, different DMA modes (cycle stealing, transparent and burst) could 

be used. When the first IBM AT clones came out, the expansion bus got physically separated from the system bus 

using an ISA bridge. This was necessary because the AT clones had CPUs running at higher frequencies than the 

expansion bus. In the figure below the single bus and the separated bus architectures are depicted. 

https://geidav.wordpress.com/2014/04/27/an-overview-of-direct-memory-access/
https://geidav.wordpress.com/author/geidav/
https://geidav.wordpress.com/2014/04/27/an-overview-of-direct-memory-access/#comments
http://en.wikipedia.org/wiki/Intel_8237
http://en.wikipedia.org/wiki/Industry_Standard_Architecture


 
With the introduction of the conventional Peripheral Component Interface (PCI) bus architecture in 1992, the DMA 

controller became obsolete because of a technique called bus mastering, or first party DMA. PCI DMA transfers were 

implemented by allowing only one device at a time to access the bus. This device is called the bus master. While the 

bus master holds the bus it can perform memory transfers without CPU interaction. The fundamental difference 

between bus mastering and the use of a DMA controller is that DMA compatible devices must contain a DMA 

engine driving the memory transfers. As multiple PCI devices can master the bus, an arbitration scheme is required to 

avoid that more than one device drives the bus simultaneously. The advantage of bus mastering is a significant 

latency reduction because communication with the third party DMA controller is avoided. Additionally, each 

device’s DMA engine can be specifically optimized for the sort of DMA transfers it performs. 

 
Today’s computers don’t contain DMA controllers anymore. If they do so, it’s only to support legacy buses like e.g. 

ISA, often by simulating an ISA interface using a Low Pin Count (LPC) bus bridge. In 2004 the PCI successor and 

latest peripheral computer bus system PCI Express (PCIe) was introduced. PCIe turned the conventional PCI bus from 

a true bus architecture, with several devices physically sharing the same bus, into a serial, packet-switched, point-to-

pointarchitecture; very similar to how packet-switched networks function. PCIe connects each device with a 

dedicated, bi-directional link to a PCIe switch. As a result, PCIe supports full duplex DMA transfers of multiple 

devices at the same time. All arbitration logic is replaced by the packet routing logic implemented in the PCIe 

switches. While PCIe is entirely different to PCI on the hardware level, PCIe preserves backwards compatibility with 

PCI on the driver level. Newer PCIe devices can be detected and used by PCI drivers without explicit support for the 

PCIe standard. Though, the new PCIe features cannot be used of course. 

 

 

http://en.wikipedia.org/wiki/Conventional_PCI
http://en.wikipedia.org/wiki/Low_Pin_Count
http://en.wikipedia.org/wiki/PCI_Express


DMA from a driver developer’s perspective 

Now you know what DMA is and how it fits into a computer’s hardware architecture. So let’s see how DMA can be 

used in practice to speed up data heavy tasks. Since the dawn of DMA the driver (software) must prepare any 

peripheral DMA transfers, because only the operating system (OS) has full control over the memory system (we see 

later why this is important), the file system and the user-space processes. In the first step, the driver determines the 

source and destination memory addresses for the transfer. Next, the driver programs the hardware to perform the 

DMA transfer. The major difference between PCI/PCIe DMA and legacy ISA DMA is the way a DMA transfer is 

initiated. For PCI/PCIe no uniform, device independent way to initiate DMA transfers exists anymore, because each 

device contains its own, proprietary DMA engine. In contrast, the legacy DMA controller is always the same. 

First, the peripheral device’s DMA engine is programmed with the source and destination addresses of the memory 

ranges to copy. Second, the device is signaled to begin the DMA transfer. Fair enough, but how can the driver know 

when the DMA transfer has finished? Usually, the device raises interrupts to inform the CPU about transfers that 

have finished. For each interrupt an interrupt handler, previously installed by the driver, is called and the finished 

transfer can be acknowledged accordingly by the OS (e.g. signaling the block I/O layer that a block has been read 

from disk and control can be handed back to the user-space process which requested this block). Back in the times of 

high latency spinning disks an slow network interfaces this was sufficient. Today, however, we’ve got solid state 

disks (SSD) and gigabit, low-latency network interfaces. To avoid completely maxing out the system by a vast 

number of interrupts, a common technique is to hold back and queue up multiple interrupts on the device until e.g. a 

timeout triggers, a certain number of interrupts are pending or any other condition suiting the application is met. This 

technique is known as interrupt coalescing. Obviously, the condition is always a trade-off between low latency and 

high throughput. The more frequently new interrupts are raised, the quicker the OS and its waiting processes are 

informed about finished memory transfers. However, if the OS is interrupted less often it can spend more time on 

other jobs. 

DMA seems to be a nice feature in theory, but how does transferring large continuous memory regions play together 

with virtual memory? Virtual memory is usually organized in chunks of 4 KiB, called pages. Virtual memory is 

continuous as seen from a process’ point-of-view thanks to page tables and the memory management unit (MMU). 

However, it’s non-continuous as seen from the device point-of-view, because there is no MMU between the PCIe 

bus and the memory controller (well, some CPUs have an IO-MMU but let’s keep things simple). Hence, in a single 

DMA transfer only one page could be copied at a time. To overcome this limitation OS usually provide 

a scatter/gather API. Such an API chains together multiple page-sized memory transfers by creating a list of 

addresses of pages to be transferred. 

Take home message 

DMA is an indispensable technique for memory-heavy, high-performance computing. Over the last decades, the 

entire bus system and DMA controller concept was superseded by moving the DMA controller into the devices and 

using a point-to-point bus architecture. This reduced latency, made concurrent DMA transfers possible and allowed 

for device specific DMA engine optimizations. For the drivers less has changed. They are still responsible for 

initiating the DMA transfers. Though, today, instead of programming a DMA controller in a device independent 

way, drivers must program device specific DMA engines. Therefore, programming DMA transfers and processing 

DMA status information can look very different depending on the device. 

 

http://en.wikipedia.org/wiki/Virtual_memory

